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The Problem: Minimizing a Sum of Functions

min

{
f (x) =

m∑
i=1

fi(x) | x ∈ C

}
(SUM)

fi : C ⊆ X → R are functions, (X, d) is a complete geodesic metric space

Existing algorithms converge at unknown rate and rely on proximal steps (difficult)

Example: TheWeber problem (optimal facility location) is

min
x∈X

m∑
i=1

wid(x, ai)pi

The special case pi = p ≥ 1 for 1 ≤ i ≤ m is the p-mean problem

Hadamard Spaces

Geodesics are paths γ in X with d(γ(t), γ(t′)) = |t − t′|
X has curvature ≤ 0 (CAT(0)) if t 7→ d(γ(t), y)2 − t2 is convex ∀y ∈ X , γ geodesic

Hadamard Space: Complete geodesic space of curvature ≤ 0
Includes Euclidean and Hilbert space (classical optimization), but also:
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Metric Trees

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective � attaining its minimum, initial point x0
and any upper diameter bound D for {x ∶ �(x) ≤ �(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n
.

Example: circumcenter of three points in a cubical complex
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CAT(0) Cubical Complexes

Applications modeled in such spaces include hierarchical classification, matrix

means, phylogenetics, facility location, and robotic motion

Any two points in a Hadamard space are joined by a unique geodesic

Busemann Convexity

Geodesic rays r : R+ → X induce a notion of direction r(∞):
r1(∞)

r2(∞)r3(∞)

r(∞)

r(t)

x0

y

d(y, r(t))
t

For n-manifolds the space of directions X∞ is Sn−1, but for the tripod it is discrete

To a direction ξ ∈ X∞ we associate the Busemann function bξ : X → R:

bξ(y) := lim
t→∞

(d(y, r(t)) − t) (r(0) = x0, r(∞) = ξ)

(i) Rn: bξ(y) = 〈y, −ξ〉

(ii) Hn: bξ(y) = − log
(

1−‖y‖2

‖ξ−y‖2

)
(iii) Tripod: bξi

((y, j)) = (−1)δijy

The Euclidean case shows Busemann

functions generalize affine functions

Definition: f : C → R has a Busemann subgradient (ξ, s) ∈ X∞ × R+ at x if

f (y) − sbξ(y) ≥ f (x) − sbξ(x) ∀y ∈ C

Then f is Busemann convex if it has a Busemann subgradient at each x ∈ C

• Stronger than geodesic convexity in general (equivalent in Rn)

• Simple calculus: max rule, chain rule, but no sum rule… (splitting is key)

Examples: Busemann functions, distances to points/balls/horoballs (sublevel

sets of Busemann functions)

An Incremental Subgradient Algorithm

Simple algorithm for solving (SUM) in X = Rn due to Bertsekas and Nedić (2001):

For k = 0, 1, 2, . . . do
For i = 0, 1, . . . , m − 1 do

xk,i+1 = projC(xk,i − tkv
k,i) where vk,i ∈ ∂fi+1(xk,i)

xk+1 = xk,m

Generalizing, use Busemann subgradient (ξk,i, sk,i) for fi+1 at xk,i to update iterate:

xk,i+1 = projC(r(tksk,i)) where r(0) = xk,i, r(∞) = ξk,i

Computing Medians

A median of A = {a1, . . . , am} ⊆ X is a solution to (SUM) with fi = wid(·, ai)
fi has Busemann subgradient (ri(∞), wi) at x 6= ai where ri(d(x, ai)) = ai

The resulting incremental subgradient step is xk,i+1 = projC(ri(tkwi))
At step i in each internal loop, the iterate moves towards ai proportionally to wi

Theorem (Median Complexity)

If C = B(x0, f (x0)/w1), tk = 2/(w1m
√

k + 1) then f has a minimizer in C and

min
i=1,...,k

f (xi) − fopt = O(1/
√

k)

Application: Computing the Median of Phylogenetic Trees

Several candidate phylogenetic trees may be generated to model an evolutionary

history; means and medians condense this data into one representative tree

The BHV tree space Tn models the set of all binary trees on n labelled leaves,

each with n−2 nonnegative internal edge lengths (viewed as a point in [0, ∞)n−2)

Geodesics in Tn are computable in polynomial time (Owen and Provan, 2011)

In both experiments below we compute the median of three trees in T4
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