Incremental Minimization in Spaces of Nonpositive Curvature

Existing algorithms converge at unknown rate and rely on proximal steps (difficult) **Example:** The Weber problem (optimal facility location) is

³Babeş-Bolyai University

 $f(0) = x_0, r(\infty) = \xi$

uclidean case shows Busemann ns generalize affine functions

) where $v^{k,i} \in \partial f_{i+1}(x^{k,i})$

The Problem: Minimizing a Sum of Functions

$$
\min \left\{ f(x) = \sum_{i=1}^{m} f_i(x) \mid x \in C \right\} \tag{S}
$$

 $f_i\colon C\subseteq X\to\mathbb{R}$ are functions, (X,d) is a complete geodesic metric space

$$
\min_{x \in X} \sum_{i=1}^m w_i d(x, a_i)^{p_i}
$$

The special case $p_i = p \geq 1$ for $1 \leq i \leq m$ is the *p*-mean problem

Hadamard Spaces

Geodesics are paths γ in X with $d(\gamma(t), \gamma(t')) = |t - t'|$ *X* has curvature ≤ 0 (CAT(0)) if $t \mapsto d(\gamma(t), y)^2 - t^2$ is convex $\forall y \in X, \gamma$ geodesic **Hadamard Space:** Complete geodesic space of curvature ≤ 0 Includes Euclidean and Hilbert space (classical optimization), but also:

For *n*-manifolds the space of directions *X*[∞] is S *n*−1 , but for the tripod it is discrete To a direction $\xi \in X^\infty$ we associate the **Busemann function** $b_\xi \colon X \to \mathbb{R}$:

Hyperbolic Space H*ⁿ*

Positive Definite Cone S^n_+ $E_{\rm eff}$ is a cubical complex of three points in a cubical complex of thr

Metric Trees

 $++$

CAT(0) Cubical Complexes

Applications modeled in such spaces include hierarchical classification, matrix means, phylogenetics, facility location, and robotic motion

Any two points in a Hadamard space are joined by a unique geodesic

Poster available at arielgoodwin.github.io/talks Center for Applied Mathematics, awg77@cornell.edu

¹Cornell University

²University of Seville

$UM)$

Busemann Convexity

- A median of $A = \{a_1, \ldots, a_m\} \subseteq X$ is a solution to (SUM) with $f_i = w_i d(\cdot, a_i)$
- *f*_{*i*} has Busemann subgradient $(r_i(\infty), w_i)$ at $x \neq a_i$ where $r_i(d(x, a_i)) = a_i$
- The resulting incremental subgradient step is $x^{k,i+1} = \mathrm{proj}_C(r_i(t_k w_i))$
- At step *i* in each internal loop, the iterate moves towards *aⁱ* proportionally to *wⁱ*

- Several candidate phylogenetic trees may be generated to model an evolutionary history; means and medians condense this data into one representative tree
- The **BHV tree space** \mathcal{T}_n models the set of all binary trees on *n* labelled leaves, each with *n*−2 nonnegative internal edge lengths (viewed as a point in [0*,* ∞) *n*−2)
- Geodesics in \mathcal{T}_n are computable in polynomial time (Owen and Provan, 2011)
- In both experiments below we compute the median of three trees in \mathcal{T}_4

ⁿ along supporting rays Examples: Busemann functions, distances to points/balls/horoballs (sublevel *n .* sets of Busemann functions)

$$
b_{\xi}(y) := \lim_{t \to \infty} (d(y, r(t)) - t) \qquad (r(t))
$$

Definition: $f: C \to \mathbb{R}$ has a Busemann subgradient $(\xi, s) \in X^\infty \times \mathbb{R}_+$ at x if $f(y) - sb_{\xi}(y) \ge f(x) - sb_{\xi}(x) \quad \forall y \in C$ Then *f* is **Busemann convex** if it has a Busemann subgradient at each $x \in C$

- Stronger than geod • Stronger than geodesic convexity in general (equivalent in \mathbb{R}^n)
- Simple calculus: max rule, chain rule, but no sum rule... (splitting is key)

- [1] M. Bac̆ák. *Convex Analysis and Optimization in Hadamard Spaces*. De Gruyter, Berlin, 2014.
- [2] M.R. Bridson and A. Haefliger. *Metric Spaces of Non-Positive Curvature.* Springer-Verlag Berlin, 1999.
- [3] A.S. Lewis, G. López-Acedo, and A. Nicolae. Horoballs and the subgradient method. arXiv:2403.15749, 2024.

Cornell University

An Incremental Subgradient Algorithm

Simple algorithm for solving (SUM) in $X = \mathbb{R}^n$ due to Bertsekas and Nedić (2001):

For
$$
k = 0, 1, 2, ...
$$
 do
\nFor $i = 0, 1, ..., m - 1$ do
\n
$$
x^{k,i+1} = \text{proj}_C(x^{k,i} - t_k v^{k,i}) \text{ where}
$$
\n
$$
x^{k+1} = x^{k,m}
$$

, 168 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / 169 / Generalizing, use Busemann subgradient $(\xi^{k,i}, s_{k,i})$ for f_{i+1} at $x^{k,i}$ to update iterate: $x^{k,i+1} = \text{proj}_C(r(t_k s_{k,i}))$ where $r(0) = x^{k,i}, r(\infty) = \xi^{k,i}$

Ariel Goodwin¹ Adrian S. Lewis¹ Genaro López-Acedo² Adriana Nicolae³

Computing Medians

Theorem (Median Complexity)
\nIf
$$
C = B(x^0, f(x^0)/w_1)
$$
, $t_k = 2/(w_1 m\sqrt{k+1})$ then f has a minimizer in C and
\n
$$
\min_{i=1,\dots,k} f(x^i) - f_{\text{opt}} = O(1/\sqrt{k})
$$

Application: Computing the Median of Phylogenetic Trees

References and Acknowledgements:

Ariel Goodwin is supported by the NSERC postgraduate fellowship PGSD-587671-2024