Incremental Minimization in Spaces of Nonpositive Curvature

The Problem: Minimizing a Sum of Functions

$$\min\left\{f(x) = \sum_{i=1}^{m} f_i(x) \mid x \in C\right\} \quad (S$$

 $f_i: C \subseteq X \to \mathbb{R}$ are functions, (X, d) is a **complete geodesic metric space**

Existing algorithms converge at unknown rate and rely on proximal steps (difficult) **Example:** The Weber problem (optimal facility location) is

$$\min_{x \in X} \sum_{i=1}^{m} w_i d(x, a_i)^{p_i}$$

The special case $p_i = p \ge 1$ for $1 \le i \le m$ is the *p*-mean problem

Hadamard Spaces

Geodesics are paths γ in X with $d(\gamma(t), \gamma(t')) = |t - t'|$ X has curvature ≤ 0 (CAT(0)) if $t \mapsto d(\gamma(t), y)^2 - t^2$ is convex $\forall y \in X, \gamma$ geodesic **Hadamard Space:** Complete geodesic space of curvature ≤ 0 Includes Euclidean and Hilbert space (classical optimization), but also:

Positive Definite Cone S_{++}^n

CAT(0) Cubical Complexes

Applications modeled in such spaces include hierarchical classification, matrix means, phylogenetics, facility location, and robotic motion Any two points in a Hadamard space are joined by a unique geodesic

Poster available at arielgoodwin.github.io/talks

¹Cornell University

²University of Seville

Busemann Convexity

For n-manifolds the space of directions X^{∞} is \mathbb{S}^{n-1} , but for the tripod it is discrete To a direction $\xi \in X^{\infty}$ we associate the **Busemann function** $b_{\xi} \colon X \to \mathbb{R}$:

$$p_{\xi}(y) := \lim_{t \to \infty} (d(y, r(t)) - t) \qquad (r(t))$$

(i)	\mathbb{R}^n : $b_{\xi}(y) = \langle y, -\xi \rangle$	
(ii)	$\mathbb{H}^n: b_{\xi}(y) = -\log\left(\frac{1 - \ y\ ^2}{\ \xi - y\ ^2}\right)$	The Eu functior
(iii)	Tripod: $b_{\xi_i}((y,j)) = (-1)^{\delta_{ij}} y$	

Definition: $f: C \to \mathbb{R}$ has a **Busemann subgradient** $(\xi, s) \in X^{\infty} \times \mathbb{R}_+$ at x if $f(y) - sb_{\xi}(y) \ge f(x) - sb_{\xi}(x) \quad \forall y \in C$

Then f is **Busemann convex** if it has a Busemann subgradient at each $x \in C$

- Stronger than geodesic convexity in general (equivalent in \mathbb{R}^n)
- Simple calculus: max rule, chain rule, but no sum rule... (splitting is key)

Examples: Busemann functions, distances to points/balls/horoballs (sublevel sets of Busemann functions)

An Incremental Subgradient Algorithm

Simple algorithm for solving (SUM) in $X = \mathbb{R}^n$ due to Bertsekas and Nedić (2001):

For
$$k=0,1,2,\ldots$$
 do
For $i=0,1,\ldots,m-1$ do
 $x^{k,i+1}=\mathrm{proj}_C(x^{k,i}-t_kv^{k,i})$ where $x^{k+1}=x^{k,m}$

Generalizing, use Busemann subgradient $(\xi^{k,i}, s_{k,i})$ for f_{i+1} at $x^{k,i}$ to update iterate: $x^{k,i+1} = \text{proj}_{C}(r(t_k s_{k,i}))$ where $r(0) = x^{k,i}, r(\infty) = \xi^{k,i}$

Ariel Goodwin¹ Adrian S. Lewis¹ Genaro López-Acedo² Adriana Nicolae³

³Babeş-Bolyai University

 $(0) = x_0, r(\infty) = \xi)$

clidean case shows Busemann ns generalize affine functions

Te $v^{k,i} \in \partial f_{i+1}(x^{k,i})$

Theorem (Median Complexity
If
$$C = B(x^0, f(x^0)/w_1), t_k = 2/m_{i=1,...,k}$$

Application: Computing the Median of Phylogenetic Trees

References and Acknowledgements:

- [1] M. Bačák. Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin, 2014.
- [2] M.R. Bridson and A. Haefliger. *Metric Spaces of Non-Positive Curvature*. Springer-Verlag Berlin, 1999.
- [3] A.S. Lewis, G. López-Acedo, and A. Nicolae. Horoballs and the subgradient method. arXiv:2403.15749, 2024.

Ariel Goodwin is supported by the NSERC postgraduate fellowship PGSD-587671-2024

Cornell University

Computing Medians

- A median of $A = \{a_1, \ldots, a_m\} \subseteq X$ is a solution to (SUM) with $f_i = w_i d(\cdot, a_i)$
- f_i has Busemann subgradient $(r_i(\infty), w_i)$ at $x \neq a_i$ where $r_i(d(x, a_i)) = a_i$
- The resulting incremental subgradient step is $x^{k,i+1} = \text{proj}_C(r_i(t_k w_i))$
- At step i in each internal loop, the iterate moves towards a_i proportionally to w_i

- $/(w_1m\sqrt{k+1})$ then f has a minimizer in C and $f(x^i) - f_{\text{opt}} = O(1/\sqrt{k})$
- Several candidate phylogenetic trees may be generated to model an evolutionary history; means and medians condense this data into one representative tree
- The **BHV tree space** \mathcal{T}_n models the set of all binary trees on n labelled leaves, each with n-2 nonnegative internal edge lengths (viewed as a point in $[0,\infty)^{n-2}$)
- Geodesics in \mathcal{T}_n are computable in polynomial time (Owen and Provan, 2011)
- In both experiments below we compute the median of three trees in \mathcal{T}_4

Center for Applied Mathematics, awg77@cornell.edu