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Convexity

Definition 1

A function f : Rn → R ∪ {+∞} is convex if
epi f := {(x , α) ∈ Rn × R : f (x) ≤ α} (epigraph of f ) is a convex set.

Equivalently, for all x , y ∈ dom f := {x ∈ Rn : f (x) < +∞}, λ ∈ [0, 1] we have:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) (1)

epi f

f (x)

Convex function

epi g
g(x)

Non-convex function
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The function class Γ0

f : Rn → R ∪ {+∞} is called:

closed if epi f is a closed set in Rn × R
proper if dom f 6= ∅

Example:

The function f : R→ R ∪ {+∞}

f (x) =

{
− log x , x > 0,

+∞, x ≤ 0,

epi f
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Set Γ0 := {f : Rn → R ∪ {+∞} | f is convex, proper, and closed}
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Proximal Operators

proxf (x) := argmin
u∈Rn

f (u) +
1

2
||u − x ||2

Ubiquitous in convex optimization algorithms

Exists uniquely if f ∈ Γ0

Example: The indicator function for a set C ⊆ Rn is

δC (x) :=

{
0, x ∈ C ,

+∞, x /∈ C ,

proxδC (x) = argmin
y∈C

||x − y ||2 =: PC (x) – the projection operator
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Epigraphical Projection via Prox Operator

Given (x̄ , ᾱ) ∈ Rn × R and f ∈ Γ0, consider projecting (x̄ , ᾱ) onto epi f .

Theorem 1

Pepi f (x̄ , ᾱ) = (proxλ̄f (x̄), ᾱ + λ̄) (2)

where λ̄ > 0 is the unique minimizer of the (strongly convex) optimization problem

min
λ≥0

θepi(λ) :=
1

2
λ2 + ᾱλ+ φ̄x̄f (λ) (3)

We focus on the case (x̄ , ᾱ) /∈ epi f

φ̄x̄f (λ) := −λf (proxλf (x̄))− 1
2 ||x̄−proxλf (x̄)||2

for λ > 0 Pepi f (x̄ , ᾱ)

f (x)

(x̄ , ᾱ)
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Nonsmooth Newton Method

We propose a variant of Newton’s method, based on [4, Algorithm 3.1].

λk+1 = λk + tkP[−λk ,∞]

(
−
θ′epi(λk)

gk

)
gk are generalized gradients, by Clarke [1]
Armijo line search to choose tk
If −θ′epi has some convexity we can set tk = 1

Example: The function θ′epi when projecting (−1, 1) ∈ R× R onto epi(− log(·))

λ̄

θ′epi(λ)

1 2

−1

1

2

3

s
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Level Set Projections

We can similarly project onto level sets of f ∈ Γ0

Lev(f , α) := {x ∈ Rn : f (x) ≤ α} (α ∈ R)

Note that θlev(λ) = θepi(λ)− 1
2λ

2

Example: Let f : Rn → R, f (x) = ||x ||1 =
∑n

i=1 |xi |, the l1-norm. Then

Lev(f , 1) = B||·||1 [0, 1]

is the l1-unit ball.

Applications to machine learning and image problems

Promotes sparse solutions
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Projection onto the l1-ball

We tested the Newton method against two competitive algorithms described in [2]
and [3]: the proposed algorithm of Condat and Improved Bisection (IBIS) of Liu
and Ye.

Table: Time (seconds) for projecting vectors onto the l1-unit ball in dimension N with
coordinates chosen using a Gaussian distribution with σ = 0.1

N Warm Newton Condat IBIS

20 1.44× 10−6 1.53× 10−6 1.83× 10−6

103 1.83× 10−5 2.11× 10−5 3.65× 10−5

106 1.38× 10−2 1.44× 10−2 2.89× 10−2

107 1.51× 10−1 1.43× 10−1 2.85× 10−1

Using a warm start implementation, our algorithm performs better than or roughly
on par with the competitors.
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