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Definition 1

A function f : R" — R U {400} is convex if
epi f :={(x,a) € R" xR : f(x) < o} (epigraph of ) is a convex set.

Equivalently, for all x,y € dom f := {x € R": f(x) < 400}, A € [0,1] we have:
F(x + (1= A)y) < M (x) + (1= Nf(y) (1)

epi epi g

Convex function Non-convex function
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The function class [

f:R” - RU{+oo} is called:
@ closed if epi f is a closed set in R” x R
o proper if dom f # ()

Example:

epi f

=N W N

The function f : R — R U {+o0}

f(x) —logx, x>0,
X) =
too,  x<0, ~1 1\\34

Set o :={f : R" = RU {+oc} | f is convex, proper, and closed}
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Proximal Operators

1
prox(x) := argmin f(u) + =||u — x||?
ueR" 2

@ Ubiquitous in convex optimization algorithms

o Exists uniquely if f € [y

Example: The indicator function for a set C CR" is

0, x € C,
o) = +o0o, x¢C

proxs.(x) = argmin||x — y||* =: Pc(x) — the projection operator
yecC
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Epigraphical Projection via Prox Operator

Given (x,a) € R" x R and f € Ty, consider projecting (X, &) onto epi f.

Theorem 1

Pepi (X, @) = (proxz(X), & + 5\) 2)

where X > 0 is the unique minimizer of the (strongly convex) optimization problem

- Ll oy s
min Oepi(N) := 5/\ + aX + ¢F(N) (3)

@ We focus on the case (X, &) ¢ epi f

° GF(N) := —Af(prox, (X)) — 3 Ix — prox, ()2
for A >0 Pepi (X, @)
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Nonsmooth Newton Method

We propose a variant of Newton's method, based on [4, Algorithm 3.1].
eépi()‘k))

Bk

Akt1 = Ak + P2y, 00) (

@ gy are generalized gradients, by Clarke [1]

@ Armijo line search to choose tx

o If fﬁépi has some convexity we can set t; =1

Example: The function 6;,; when projecting (—1,1) € R x R onto epi(— log(-))
3

egpi()‘)
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Level Set Projections

We can similarly project onto level sets of f € Iy

Lev(f,a) :={x e R": f(x) < a} (¢ € R)
Note that fiey(A) = fepi(A) — 222
Example: Let f: R" = R, f(x) = ||x||1 = >_i_, |xi|, the l-norm. Then
Lev(f, ].) = BHHI[O’ 1]

is the -unit ball.

@ Applications to machine learning and image problems

@ Promotes sparse solutions
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Projection onto the /-ball

We tested the Newton method against two competitive algorithms described in [2]
and [3]: the proposed algorithm of Condat and Improved Bisection (IBIS) of Liu

and Ye.

Table: Time (seconds) for projecting vectors onto the h-unit ball in dimension N with

coordinates chosen using a Gaussian distribution with o = 0.1

N Warm Newton Condat IBIS

20 1.44 x 10~ 153 x107% 1.83x10°°
103 1.83 x 107° 2.11 x 1075 3.65 x 107°
106 1.38x1072 1.44x1072 2.89x102
107 1.51 x 1071 1.43 x 107! 2.85x 1071

Using a warm start implementation, our algorithm performs better than or roughly

on par with the competitors.
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