Epigraphical Projections in Nonsmooth Optimization

Ariel Goodwin

Supervisor: Tim Hoheisel

University of McGill

ariel.goodwin@mail.mcgill.ca

August 28th, 2020

• • • • • • • • • •

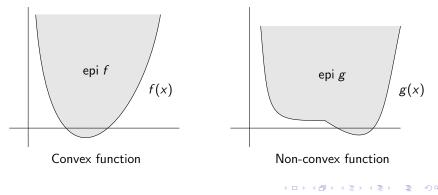
Convexity

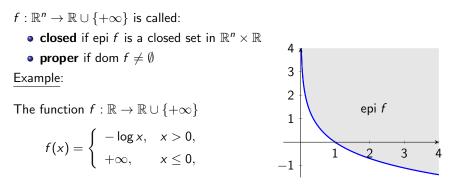
Definition 1

A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex if epi $f := \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} : f(x) \le \alpha\}$ (epigraph of f) is a convex set.

Equivalently, for all $x, y \in \text{dom } f := \{x \in \mathbb{R}^n : f(x) < +\infty\}, \lambda \in [0,1]$ we have:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
(1)





Set $\Gamma_0 := \{f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \mid f \text{ is convex, proper, and closed}\}$

Image: A math a math

$$\operatorname{prox}_f(x) := \operatorname*{argmin}_{u \in \mathbb{R}^n} f(u) + \frac{1}{2} ||u - x||^2$$

- Ubiquitous in convex optimization algorithms
- Exists uniquely if $f \in \Gamma_0$

Example: The *indicator function* for a set $C \subseteq \mathbb{R}^n$ is

$$\delta_{\mathcal{C}}(x) := \begin{cases} 0, & x \in \mathcal{C}, \\ +\infty, & x \notin \mathcal{C}, \end{cases}$$

 $\operatorname{prox}_{\delta_{\mathcal{C}}}(x) = \underset{y \in \mathcal{C}}{\operatorname{argmin}} ||x - y||^2 =: P_{\mathcal{C}}(x)$ – the **projection operator**

(日)

Epigraphical Projection via Prox Operator

Given $(\bar{x}, \bar{\alpha}) \in \mathbb{R}^n \times \mathbb{R}$ and $f \in \Gamma_0$, consider projecting $(\bar{x}, \bar{\alpha})$ onto epi f.

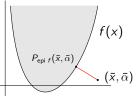
Theorem 1

$$P_{\text{epi}\,f}(\bar{x},\bar{\alpha}) = (\operatorname{prox}_{\bar{\lambda}f}(\bar{x}),\bar{\alpha}+\bar{\lambda}) \tag{2}$$

where $\bar{\lambda} > 0$ is the unique minimizer of the (strongly convex) optimization problem

$$\min_{\lambda \ge 0} \theta_{\mathsf{epi}}(\lambda) := \frac{1}{2}\lambda^2 + \bar{\alpha}\lambda + \bar{\phi}_f^{\bar{x}}(\lambda) \tag{3}$$

- We focus on the case $(\bar{x}, \bar{\alpha}) \notin epi f$
- We focus on the case $\langle \bar{\phi}_{f}^{\bar{x}}(\lambda) := -\lambda f(\operatorname{prox}_{\lambda f}(\bar{x})) \frac{1}{2} ||\bar{x} \operatorname{prox}_{\lambda f}(\bar{x})||^{2}$



イロト イボト イヨト イヨ

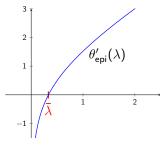
Nonsmooth Newton Method

We propose a variant of Newton's method, based on [4, Algorithm 3.1].

$$\lambda_{k+1} = \lambda_k + t_k P_{[-\lambda_k,\infty]} \left(-\frac{\theta_{\mathsf{epi}}'(\lambda_k)}{g_k} \right)$$

- g_k are generalized gradients, by Clarke [1]
- Armijo line search to choose t_k
- If $-\theta'_{epi}$ has some convexity we can set $t_k = 1$

Example: The function $heta'_{epi}$ when projecting $(-1,1) \in \mathbb{R} imes \mathbb{R}$ onto epi $(-\log(\cdot))$



We can similarly project onto **level sets** of $f \in \Gamma_0$

$$Lev(f, \alpha) := \{x \in \mathbb{R}^n : f(x) \le \alpha\} \ (\alpha \in \mathbb{R})$$

Note that $\theta_{lev}(\lambda) = \theta_{epi}(\lambda) - \frac{1}{2}\lambda^2$
Example: Let $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$, the l_1 -norm. Then
$$Lev(f, 1) = B_{||\cdot||_1}[0, 1]$$

is the *l*₁-unit ball.

- Applications to machine learning and image problems
- Promotes sparse solutions

Image: A math a math

We tested the Newton method against two competitive algorithms described in [2] and [3]: the proposed algorithm of Condat and Improved Bisection (IBIS) of Liu and Ye.

Table: Time (seconds) for projecting vectors onto the l_1 -unit ball in dimension N with coordinates chosen using a Gaussian distribution with $\sigma = 0.1$

Ν	Warm Newton	Condat	IBIS
20	$1.44 imes 10^{-6}$	$1.53 imes10^{-6}$	$1.83 imes10^{-6}$
10 ³	$1.83 imes10^{-5}$	$2.11 imes10^{-5}$	$3.65 imes10^{-5}$
10 ⁶	$1.38 imes10^{-2}$	$1.44 imes10^{-2}$	$2.89 imes10^{-2}$
10 ⁷	$1.51 imes10^{-1}$	$1.43 imes10^{-1}$	$2.85 imes10^{-1}$

Using a warm start implementation, our algorithm performs better than or roughly on par with the competitors.

< □ > < 同 > < 回 > < 回 >

References

Frank H. Clarke (1983)

Optimization and Nonsmooth Analysis John Wiley & Sons, New York

Laurent Condat (2016)

Fast projection onto the simplex and *I*₁ ball Mathematical Programming, Series A, Springer 158 (1), pp. 575 - 585

Jun Liu and Jieping Ye (2009)

Efficient Euclidean projections in linear time Proceedings of the 26th Annual International Conference on Machine Learning pp. 657 - 664

Jong-Shi Pang and Liqun Qi (1995)

A globally convergent Newton method for convex SC¹ minimization problems Journal of Optimization Theory and Applications 85(3), pp. 633 - 648

Image: A matching of the second se