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Motivation: Linear Inverse Problems

Canonical Example: Cx ~ b

Xn;]iRrL {R(X) + %F(CX, b)}

@ R is a regularizer imposing constraints on the optimizers

@ F(Cx,b) is a fidelity term estimating the difference between Cx and b

@ Many of these “norms” for regularization and fidelity have interpretations
from statistical estimation
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Figure: Image deblurring problem of the form Cx ~ b, Rioux et al. (2021)
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An Information-Theoretic Approach

min {R(X) + %F(CX, b)}

x€R?

@ How can we choose R and F in a meaningful way?

o Idea: Work at the higher level of the probability distribution of the ground
truth x.

@ Given a prior distribution, P, we want to understand the distribution of the
ground truth, Q.

@ The Kullback-Leibler (KL) divergence [Kullback, Leibler (1951)] between
o-finite P and Q € P(Q) is defined by

D (Q1IP) = f'°g< )dQ Q=P

otherwise
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MEM Paradigm

@ Maximum Entropy on the Mean: The state best describing a system is the
mean of a distribution maximizing some measure of entropy (a la Principle of
Maximum Entropy [Jaynes, 1957])

Definition (MEM Function)

The Maximum Entropy on the Mean (MEM) Function xp: RY — (—o00, 00] is
defined by [Rietsch, 1977]:

rkp(y) :=inf {DkL(Q||P) | Q < P with Eq = y}

@ Information-driven approach: Measure compliance of y with P via kp(y)

@ Applications: crystallography [Navaza (1985)], seismic tomography [Fermin
et al. (2006)], medical imaging [Amblard et al. (2004), Deslauriers-Gauthier
et al. (2017), Cai et al. (2022)], image processing [Rioux et al. (2021)]
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Alternate Formulation and the MEM Function

The MEM reformulation of our original inverse problem in the least squares
setting:

% = EglX], Q = argmingcp(q) { KL(QIIP) + S1lb — CEQIX]|3} .

One can equivalently formulate as:

. a
X = argmin, cpa {§||Cyf b||> + np(y)}

where kp(y) = inf {DxL(QI|P) | Q < P with Eg = y} is the MEM function.
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Cramér’s Function

The MEM function is defined by a seemingly intractable problem. How can we
use it?
kp(y) = inf{DkL(Q||P) | @ < P with Eq = y}

Under some conditions:
kp(y) = ¥p(y) = sup {(y,0) — v¥r(0)}
[

where ¢p(0) := log [, exp({y,#))dP(y) is the log-normalizer of P. The map ¢},
is known as Cramér’s function (c.f. large deviations theory).
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Legendre Type

Definition (Legendre Type)
A function ¢ € [ is essentially smooth if it satisfies the following conditions:
Q int(dom 1)) # 0
@ ¢ is differentiable on int(dom )
Q [V (x*)|| = oo for any {x¥} C int(dom 1)) such that x* — % € d(dom v)
If moreover v is strictly convex on int(dom ) then 1 is of Legendre type.

Ex: The function f : R — RU {400} 3
2
—logx, x>0,
f(X) = 1
~+o00, x <0,
1 2 3 4
-1
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Legendre Functions and Conjugacy

Theorem (Rockafellar, 1970)

If 1p € Ty is of Legendre type then
@ The convex conjugate v* is of Legendre type

@ V4 is a bijection from int(dom ) to int(dom ¢*) with inverse
(Vip)~t = vy*

int(dom)) T
int(doma)*)

Figure: lllustration of the above theorem
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Probability Theory

Let p be a o-finite measure on measurable Q C R?. Some definitions:
e Q, = supp(p) (support of p)
o Q°f = cl(conv,) (convex support of p)
We consider two cases:
Q@ (2 =R9 v = Lebesgue)
Q@ (Q C RY v = Counting)
Define P(2) := {P probability measure on Q | P <« v}.
Each such P has Radon-Nikodym Derivative fp := W expected value Ep, and

moment-generating function® Mp:

Ep := / ydP(y) € R?
Q

Mp(6) = /Q exp((y. 6))dP(y)

1We assume int(dom Mp) # 0

Ariel Goodwin (McGill) July 26th, 2022 9/23



Exponential Families

Let P be o-finite, P < v. The natural parameter space for P is defined by

0r = {0 € RS | Me() = [ expl(y.0))aP(y) < oo}

Definition (Log-Normalizer)
The function p: RY — RU {+00} by

log MP(H), 0 € Op

vp(0) = {—i—oo, 0¢0p

is called the log-normalizer.

Definition (Exponential Family)

The standard exponential family generated by P is

Fp = {fr,(y) :=exp({y,0) — ¢p(0)) | 6 € ©p}
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Exponential Family Properties

We assume int©p # 0,int Q& # () (an exponential family satisfying this is called
minimal)

Theorem (Regularity of 1p, Brown 1986)

Let Fp be a minimal exponential family. Then:
@ The log-normalizer 1p is strictly convex on the convex set ©p
Q Yp e Coo(int @p), pr(e) = EPQ

If yp is essentially smooth we say Fp is steep.
Conclusion: If Fp is minimal and steep then p is of Legendre type.

Corollary (Mean Value Parametrization)

The natural parameter 6 can be expressed as

0 = Vp(n)
where 1 = Ep, = V1pp(6).
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Domain of Cramér Function vs. MEM Function

Theorem (Domain of ¢5, Barndorff-Nielsen 1978)

Suppose P € P(QQ) generates a minimal and steep exponential family. Then:

intQy C domvyp C QF

Moreover, the following hold:
@ IfQp is finite then dom yp = QF
@ IfQp is countable then dom 1} 2O conv Qp
@ IfQp is uncountable then dom v} = int QF

Theorem (Domain of kp, Vaisbourd et al.)
Suppose P satisfies the same assumptions above. Then:
o If Qp is countable then dom kp = conv Qp

e If Qp is uncountable then dom kp = int QF
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Key Inequality

Given v of Legendre type, its Bregman divergence is:

Dy(y,x) := (y) = (x) = (VY (x),y — x)

Lemma (MEM Upper Bound, Vaisbourd et al.)
Suppose P € P(QQ) generates a minimal and steep exponential family. Then:
Vp(y) < wp(y) < ¥p(y) + Dre(QIIPo) — Dy (v, Vir(9))

for any y € domkp, Q < P with Eq =y, and 6 € int©p. Recall Py is defined by
density fp, = exp({(-,0) — ¥p(0)) € Fp.

4

Proof of equality: If y € intQ& then 36 € intOp s.t. y = Viop(0) = Ep,.
Now take Q@ = Py above. [J

What if y is on the boundary?
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Equivalence of Cramér and MEM

Theorem (Equality Conditions, Vaisbourd et al.)

Suppose P € P(Q) generates a minimal and steep exponential family. Moreover,
suppose one of the following holds:

@ Qp is uncountable
o Qp is countable and conv Qp is closed

Then kp = p. In particular, kp is closed, proper, and convex.

Remark: If P € P(RQ) is separable in the sense that P = Py x P, x -+ X Py then
Mp(0) = 12, Mp,(6;). Hence:

VYp(y) = sup {(y,0) — log Mp(0)}

0eRrR?

= Z sup {}/I i — log MP;(ei)}

,116

Upshot: Suffices to compute scalar Cramér functions.

Ariel Goodwin (McGill) July 26th, 2022



Reference Distribution (P) Cramér Rate Function (¢5(y)) dom ¢p
Multivariate Normal 1 Te—1 d
Ty — )Ty — R
pER, T s T >0 2= =)
Poisson (A € Ry4) ylog(y/A) —y + A R+
Gamma (o, 8 € Ryy) By —a+alog (%) Ryt

Normal-inverse Gaussian
a,B,6 €R:a > |8, on/0% + (y — p)? — Bly — p) — 0y R
0>0,7v:=+/a>— 3

Multinomial (p € A4, n € N) 27:1 yilog (L> nlAg N 1(p)?

np;

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential /Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via
Multinomial), Negative Binomial & Shifted Geometric (via Negative Multinomial).

2/(p) := {x €R? | x; =0 if p; = 0}
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The MEM Estimator

Maximum likelihood (ML) is a popular principle of statistical estimation
Ome = OmL(Y, Fo, S) := argmaxycsne {log fp, (7)}

where:
e S C RY are admissible parameters
e Fo parameterized family of distributions Py, € © C RY with densities fp,

e y € R? is a sample of observed data

Definition/Theorem (Vaisbourd et al.)
The MEM estimator ypem € R? is defined by:

ymem = ymem (Y, Fo, S™) = argmin, . {?ﬁﬁé()’)}

where P; € Fg is such that y = ]Epé. The existence and uniqueness of ypey is
guaranteed under some mild assumptions.
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Linear Models

@ Bioinformatics, Image Processing, Machine Learning, ...

e C € C CR™ (dictated by the problem)

e Fo={Py|0 € © CR™} CP(Q)
Reference distribution Pj is specified via y = Ep, where y is our observation
vector. Thus the MEM estimator of the linear model is:

argmin, {z/;;;é(cx)}, (CeC,0ec®@:Ep, =)

Reference Family Objective Function (1/),*,@ o ()
Normal FCx = g2
Poisson > ital{ci, x) log({ci, x) /9i) — (cin x) + 1]

Gamma (8 =1) > [(ci,x) = Jilog((ci, x)) — (i — Ji log )]
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Regularized Model

Regularize to create well-posed problem:

)r:éi)rg {1/1,*;,é(Ax) + cp(x)}, (AeC,0€©:Ep, =7)

@ Here ¢: RY — (—o0, 00] is closed, proper, convex.

@ We can use Cramér’s function to regularize

o Take R € P(Q) as a prior distribution encoding info about the desired
solution

{v,(60 + v}

min
xeX
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Application to Image Deblurring

QR code image deblurring:

.1 112
i { 2 1x — 913 + e}

@ y - blurred and noisy image
@ A - blurring matrix Bl

@ R - reference distribution (Bernoulli)

Fig. 12. Result of applying our method to a processed version of Fig. 11.

Figure: From Rioux et al. (2021)
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Solving the Problem

Regularized model falls into the additive composite framework:

min {f(x) + g(x)}

x€eRd

The Bregman proximal gradient algorithm is specified by a kernel function h that
[Bauschke et al. (2017)]:
@ is smooth adaptable w.r.t. f (Lh — f is convex for some L > 0)

@ induces a computationally tractable Bregman proximal operator with respect
tog

Definition (Bregman Proximal Operator)

Let g, h: RY — (—o0, +00] such that g is proper and closed, and h is Legendre
type. Then for X € int(dom h) we define the Bregman proximal operator to be

proxg(f() = argmin, cpa {g(x) + Du(x,X)}
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Bregman Proximal Gradient Algorithm

Algorithm 1: Bregman Proximal Gradient (BPG) Method
Input: Set t € (0,1/L] and x° € int(dom h).
for k=0,1,2,... do
| XK = proxf, (Vh*(Vh(x¥) — tVF(x¥)));
end

@ h=1|| |3 - proximal gradient method
e h=1||-|3, g = ds - gradient projection method
e h=1| |3, g =0 - gradient descent method

Other variants and methods (acceleration, decomposition) rely on the same
operators we derive in this work.
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Bregman Proximal Operators

Reference Distribution Proximal Operator Kernel (h(x))

Multivariate Normal
HeERI YS! T~0

Gamma (o, 8 € Ryy) xt = (x —th+ /(XA + 4m> 2 (1/2)|x3

X+:{M, n=X,

xt = (t + )R + t) (1/2)lIx(13

ptbp, p#X, —>_ log x;

where p is the unique real root of a cubic®

Laplace (1 € R, be R )

Poisson (A € Ry.) xT = (xAt)# >~ xi log x;
e L1 d
Multinomial (p € Ag, n € N) xt = <W> >~ xilog x;
S (op) e )

In addition: Normal-inverse Gaussian, Negative Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential /Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial), Negative
Binomial & Shifted Geometric (via Negative Multinomial) for each each choice of h shown.

3With closed-form coefficients dependent on b, i, X, t
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o MEM is a very useful tool for the incorporation of prior information into
models for inverse problems.

@ While much of the theory appears in the literature and was historically
applied to a few inverse problems, it seems to have been forgotten.

@ Revisit the theory and experiment with solving regularized MEM linear
models.

@ arXiv preprint and computational toolbox of Cramér functions, prox
operators, and algorithms, to appear online shortly.

@ Ongoing work: Obtain the Cramér function (or log-MGF) via deep learning.
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