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Motivation: Linear Inverse Problems

Canonical Example: Cx ∼ b

min
x∈Rd

{
R(x) +

α

2
F (Cx , b)

}
R is a regularizer imposing constraints on the optimizers

F (Cx , b) is a fidelity term estimating the difference between Cx and b

Many of these “norms” for regularization and fidelity have interpretations
from statistical estimation

23

unbiased.

Our general method, on the other hand, facilitates the incorporation of far more

prior information. Indeed, we seek a prior probability distribution µ over the space of

latent images that possesses at least one of the following two properties:

(i) µ has a tractable moment-generating function (so that the dual problem can be

solved via gradient-based methods such as L-BFGS),

(ii) It is possible to e�ciently sample from µ (so that the dual problem can be solved

via stochastic optimization methods).

As a simple example, we provide a comparison between a uniform and an

exponential prior with large rate parameter (� = 400 at every pixel) to deblur a text

image corrupted by 5% Gaussian noise with no preprocessing or postprocessing in figure

5. In the former case, we set the fidelity parameter ↵ = 3⇥104 and in the latter, ↵ = 104.

It is clear from this figure that the noise in the blurred image is better handled by the

exponential prior. This fact will be further discussed in Section 6.1 which also introduces

an e�cient implementation of the MEM with an exponential prior. In this case, sparsity

has been used to promote the presence of a white background by inverting the intensity

of the channels during the deblurring process.

(a) PSNR: 15.69 dB (b) Uniform,

PSNR: 19.18 dB

(c) Exponential,

PSNR: 20.73 dB

Figure 5: Deconvolution with di↵erent priors: Original image is 256⇥256 pixels.

(a) is the blurred image with added 5% Gaussian noise along with the 19 pixel wide

convolution kernel. (b) is the result obtained using a uniform prior. (c) is obtained

using an exponential prior.

More generally, we believe our method could be tailored to contemporary

approaches for priors used in machine learning, and this could be one way of blind

deblurring without the presence of a finder pattern. A natural candidate for such a

prior µ is a generative adversarial network (GAN) (cf. [36]) trained on a set of

instances from a class of natural images (such as face images). GANs have achieved

state-of-the-art performance in the generative modelling of natural images (cf. [42]) and

it is possible, by design, to e�ciently sample from the distribution implicitly defined by

Figure: Image deblurring problem of the form Cx ∼ b, Rioux et al. (2021)
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An Information-Theoretic Approach

min
x∈Rd

{
R(x) +

α

2
F (Cx , b)

}
How can we choose R and F in a meaningful way?

Idea: Work at the higher level of the probability distribution of the ground
truth x .

Given a prior distribution, P, we want to understand the distribution of the
ground truth, Q.

The Kullback-Leibler (KL) divergence [Kullback, Leibler (1951)] between
σ-finite P and Q ∈ P(Ω) is defined by

DKL(Q||P) :=


∫

Ω
log

(
dQ

dP

)
dQ, Q � P

+∞, otherwise
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MEM Paradigm

Maximum Entropy on the Mean: The state best describing a system is the
mean of a distribution maximizing some measure of entropy (à la Principle of
Maximum Entropy [Jaynes, 1957])

Definition (MEM Function)

The Maximum Entropy on the Mean (MEM) Function κP : Rd → (−∞,∞] is
defined by [Rietsch, 1977]:

κP(y) := inf {DKL(Q||P) | Q � P with EQ = y}

Information-driven approach: Measure compliance of y with P via κP(y)

Applications: crystallography [Navaza (1985)], seismic tomography [Ferḿın
et al. (2006)], medical imaging [Amblard et al. (2004), Deslauriers-Gauthier
et al. (2017), Cai et al. (2022)], image processing [Rioux et al. (2021)]
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Alternate Formulation and the MEM Function

The MEM reformulation of our original inverse problem in the least squares
setting:

x = EQ [X ], Q = argminQ∈P(Ω)

{
KL(Q‖P) +

α

2
‖b − CEQ [X ]‖2

2

}
.

One can equivalently formulate as:

x = argminy∈Rd

{α
2
‖Cy − b‖2 + κP(y)

}
where κP(y) = inf {DKL(Q||P) | Q � P with EQ = y} is the MEM function.
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Cramér’s Function

The MEM function is defined by a seemingly intractable problem. How can we
use it?

κP(y) := inf {DKL(Q||P) | Q � P with EQ = y}
Under some conditions:

κP(y) = ψ∗P(y) := sup
θ∈Rd

{〈y , θ〉 − ψP(θ)}

where ψP(θ) := log
∫

Ω
exp(〈y , θ〉)dP(y) is the log-normalizer of P. The map ψ∗P

is known as Cramér’s function (c.f. large deviations theory).

Ariel Goodwin (McGill) MEMM July 26th, 2022 6 / 23



Legendre Type

Definition (Legendre Type)

A function ψ ∈ Γ0 is essentially smooth if it satisfies the following conditions:

1 int(domψ) 6= ∅
2 ψ is differentiable on int(domψ)

3 ‖∇ψ(xk)‖ → ∞ for any
{
xk
}
⊆ int(domψ) such that xk → x̄ ∈ ∂(domψ)

If moreover ψ is strictly convex on int(domψ) then ψ is of Legendre type.

Ex: The function f : R→ R ∪ {+∞}

f (x) =

{
− log x , x > 0,

+∞, x ≤ 0,

1 2 3 4

−1

1

2

3
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Legendre Functions and Conjugacy

Theorem (Rockafellar, 1970)

If ψ ∈ Γ0 is of Legendre type then

1 The convex conjugate ψ∗ is of Legendre type

2 ∇ψ is a bijection from int(domψ) to int(domψ∗) with inverse
(∇ψ)−1 = ∇ψ∗

θ

int(domψ)

µ

int(domψ∗)

∇ψ

∇ψ∗

Figure: Illustration of the above theorem
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Probability Theory

Let ρ be a σ-finite measure on measurable Ω ⊆ Rd . Some definitions:

Ωρ = supp(ρ) (support of ρ)

Ωcc
ρ = cl(conv Ωρ) (convex support of ρ)

We consider two cases:

1 (Ω = Rd , ν = Lebesgue)

2 (Ω ⊆ Rd , ν = Counting)

Define P(Ω) := {P probability measure on Ω | P � ν}.
Each such P has Radon-Nikodym Derivative fP :=

dP

dν
, expected value EP , and

moment-generating function1 MP :

EP :=

∫
Ω

ydP(y) ∈ Rd

MP(θ) :=

∫
Ω

exp(〈y , θ〉)dP(y)

1We assume int(domMP) 6= ∅
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Exponential Families

Let P be σ-finite, P � ν. The natural parameter space for P is defined by

ΘP :=

{
θ ∈ Rd | MP(θ) =

∫
Ω

exp(〈y , θ〉)dP(y) <∞
}

Definition (Log-Normalizer)

The function ψP : Rd → R ∪ {+∞} by

ψP(θ) =

{
logMP(θ), θ ∈ ΘP

+∞, θ /∈ ΘP

is called the log-normalizer.

Definition (Exponential Family)

The standard exponential family generated by P is

FP := {fPθ
(y) := exp(〈y , θ〉 − ψP(θ)) | θ ∈ ΘP}
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Exponential Family Properties

We assume int ΘP 6= ∅, int Ωcc
P 6= ∅ (an exponential family satisfying this is called

minimal)

Theorem (Regularity of ψP , Brown 1986)

Let FP be a minimal exponential family. Then:

1 The log-normalizer ψP is strictly convex on the convex set ΘP

2 ψP ∈ C∞(int ΘP), ∇ψP(θ) = EPθ

If ψP is essentially smooth we say FP is steep.
Conclusion: If FP is minimal and steep then ψP is of Legendre type.

Corollary (Mean Value Parametrization)

The natural parameter θ can be expressed as

θ = ∇ψ∗P(µ)

where µ = EPθ
= ∇ψP(θ).
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Domain of Cramér Function vs. MEM Function

Theorem (Domain of ψ∗P , Barndorff-Nielsen 1978)

Suppose P ∈ P(Ω) generates a minimal and steep exponential family. Then:

int Ωcc
P ⊆ domψ∗P ⊆ Ωcc

P

Moreover, the following hold:

1 If ΩP is finite then domψ∗P = Ωcc
P

2 If ΩP is countable then domψ∗P ⊇ conv ΩP

3 If ΩP is uncountable then domψ∗P = int Ωcc
P

Theorem (Domain of κP , Vaisbourd et al.)

Suppose P satisfies the same assumptions above. Then:

If ΩP is countable then domκP = conv ΩP

If ΩP is uncountable then domκP = int Ωcc
P
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Key Inequality

Given ψ of Legendre type, its Bregman divergence is:

Dψ(y , x) := ψ(y)− ψ(x)− 〈∇ψ(x), y − x〉

Lemma (MEM Upper Bound, Vaisbourd et al.)

Suppose P ∈ P(Ω) generates a minimal and steep exponential family. Then:

ψ∗P(y) ≤ κP(y) ≤ ψ∗P(y) + DKL(Q||Pθ)− Dψ∗
P

(y ,∇ψP(θ))

for any y ∈ domκP ,Q � P with EQ = y , and θ ∈ int ΘP . Recall Pθ is defined by
density fPθ

= exp(〈·, θ〉 − ψP(θ)) ∈ FP .

Proof of equality: If y ∈ int Ωcc
P then ∃ θ ∈ int ΘP s.t. y = ∇ψP(θ) = EPθ

.
Now take Q = Pθ above.

What if y is on the boundary?
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Equivalence of Cramér and MEM

Theorem (Equality Conditions, Vaisbourd et al.)

Suppose P ∈ P(Ω) generates a minimal and steep exponential family. Moreover,
suppose one of the following holds:

ΩP is uncountable

ΩP is countable and conv ΩP is closed

Then κP = ψ∗P . In particular, κP is closed, proper, and convex.

Remark: If P ∈ P(Ω) is separable in the sense that P = P1 × P2 × · · · × Pd then

MP(θ) =
∏d

i=1 MPi (θi ). Hence:

ψ∗P(y) = sup
θ∈Rd

{〈y , θ〉 − logMP(θ)}

=
d∑

i=1

sup
θi∈R
{yiθi − logMPi (θi )}

Upshot: Suffices to compute scalar Cramér functions.
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Examples

Reference Distribution (P) Cramér Rate Function (ψ∗
P(y)) domψ∗

P

Multivariate Normal

µ ∈ Rd ,Σ ∈ Sd ,Σ � 0
1
2
(y − µ)TΣ−1(y − µ) Rd

Poisson (λ ∈ R++) y log(y/λ)− y + λ R+

Gamma (α, β ∈ R++) βy − α + α log
(

α
βy

)
R++

Normal-inverse Gaussian

α, β, δ ∈ R : α ≥ |β|,
δ > 0, γ :=

√
α2 − β2

α
√
δ2 + (y − µ)2 − β(y − µ)− δγ R

Multinomial (p ∈ ∆d , n ∈ N)
∑d

i=1 yi log
(

yi
npi

)
n∆d ∩ I (p)2

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via
Multinomial), Negative Binomial & Shifted Geometric (via Negative Multinomial).

2I (p) :=
{
x ∈ Rd | xi = 0 if pi = 0

}
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The MEM Estimator

Maximum likelihood (ML) is a popular principle of statistical estimation

θML = θML(ŷ ,FΘ,S) := argmaxθ∈S∩Θ {log fPθ
(ŷ)}

where:

S ⊆ Rd are admissible parameters

FΘ parameterized family of distributions Pθ, θ ∈ Θ ⊆ Rd with densities fPθ

ŷ ∈ Rd is a sample of observed data

Definition/Theorem (Vaisbourd et al.)

The MEM estimator yMEM ∈ Rd is defined by:

yMEM = yMEM(ŷ ,FΘ,S
∗) := argminy∈S∗

{
ψ∗Pθ̂

(y)
}

where Pθ̂ ∈ FΘ is such that ŷ = EPθ̂
. The existence and uniqueness of yMEM is

guaranteed under some mild assumptions.
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Linear Models

Bioinformatics, Image Processing, Machine Learning, . . .

C ∈ C ⊆ Rm×d (dictated by the problem)

FΘ = {Pθ | θ ∈ Θ ⊆ Rm} ⊆ P(Ω)

Reference distribution Pθ̂ is specified via ŷ = EPθ̂
where ŷ is our observation

vector. Thus the MEM estimator of the linear model is:

argminx∈X

{
ψ∗Pθ̂

(Cx)
}
, (C ∈ C, θ̂ ∈ Θ: EPθ̂

= ŷ)

Reference Family Objective Function (ψ∗Pθ̂
◦ C )

Normal 1
2‖Cx − ŷ‖2

Poisson
∑m

i=1[〈ci , x〉 log(〈ci , x〉/ŷi )− 〈ci , x〉+ ŷi ]

Gamma (β = 1)
∑m

i=1[〈ci , x〉 − ŷi log(〈ci , x〉)− (ŷi − ŷi log ŷi )]
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Regularized Model

Regularize to create well-posed problem:

min
x∈X

{
ψ∗Pθ̂

(Ax) + ϕ(x)
}
, (A ∈ C, θ̂ ∈ Θ: EPθ̂

= ŷ)

Here ϕ : Rd → (−∞,∞] is closed, proper, convex.

We can use Cramér’s function to regularize

Take R ∈ P(Ω) as a prior distribution encoding info about the desired
solution

min
x∈X

{
ψ∗Pθ̂

(Cx) + ψ∗R(x)
}
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Application to Image Deblurring

QR code image deblurring:

min
x∈Rd

{
1

2
‖Ax − ŷ‖2

2 + κR(x)

}

ŷ - blurred and noisy image

A - blurring matrix

R - reference distribution (Bernoulli)

Figure: From Rioux et al. (2021)
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Solving the Problem

Regularized model falls into the additive composite framework:

min
x∈Rd
{f (x) + g(x)}

The Bregman proximal gradient algorithm is specified by a kernel function h that
[Bauschke et al. (2017)]:

is smooth adaptable w.r.t. f (Lh − f is convex for some L > 0)

induces a computationally tractable Bregman proximal operator with respect
to g

Definition (Bregman Proximal Operator)

Let g , h : Rd → (−∞,+∞] such that g is proper and closed, and h is Legendre
type. Then for x̄ ∈ int(dom h) we define the Bregman proximal operator to be

proxhg (x̄) := argminx∈Rd {g(x) + Dh(x , x̄)}
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Bregman Proximal Gradient Algorithm

Algorithm 1: Bregman Proximal Gradient (BPG) Method

Input: Set t ∈ (0, 1/L] and x0 ∈ int(dom h).
for k = 0, 1, 2, . . . do

xk+1 = proxhtg (∇h∗(∇h(xk)− t∇f (xk)));

end

h = 1
2‖ · ‖2

2 - proximal gradient method

h = 1
2‖ · ‖2

2, g = δS - gradient projection method

h = 1
2‖ · ‖2

2, g = 0 - gradient descent method

Other variants and methods (acceleration, decomposition) rely on the same
operators we derive in this work.
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Bregman Proximal Operators

Reference Distribution Proximal Operator Kernel (h(x))

Multivariate Normal

µ ∈ Rd ,Σ ∈ Sd ,Σ � 0
x+ = (tI + Σ)−1(Σx̄ + tµ) (1/2)‖x‖2

2

Gamma (α, β ∈ R++) x+ =
(
x̄ − tβ +

√
(x̄ − tβ)2 + 4tα

)
/2 (1/2)‖x‖2

2

Laplace (µ ∈ R, b ∈ R++)
x+ =

{
µ, µ = x̄ ,

µ+ bρ, µ 6= x̄ ,

where ρ is the unique real root of a cubic3

−∑ log xi

Poisson (λ ∈ R++) x+ = (x̄λt)
1

t+1
∑

xi log xi

Multinomial (p ∈ ∆d , n ∈ N) x+ =

(
n(npi )

t
t+1 x̄

1
t+1
i∑d

i=1(npi )
t

t+1 x̄
1

t+1
i

)d

i=1

∑
xi log xi

In addition: Normal-inverse Gaussian, Negative Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial), Negative
Binomial & Shifted Geometric (via Negative Multinomial) for each each choice of h shown.

3With closed-form coefficients dependent on b, µ, x̄ , t
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Summary

MEM is a very useful tool for the incorporation of prior information into
models for inverse problems.

While much of the theory appears in the literature and was historically
applied to a few inverse problems, it seems to have been forgotten.

Revisit the theory and experiment with solving regularized MEM linear
models.

arXiv preprint and computational toolbox of Cramér functions, prox
operators, and algorithms, to appear online shortly.

Ongoing work: Obtain the Cramér function (or log-MGF) via deep learning.

Ariel Goodwin (McGill) MEMM July 26th, 2022 23 / 23


	Preliminaries
	Cramér Rate Function
	Examples and Applications

