The Maximum Entropy on the Mean Method for Linear Inverse Problems (And Beyond)

Ariel Goodwin

Joint work with Yakov Vaisbourd, Tim Hoheisel, Rustum Choksi (McGill), and Carola-Bibiane Schöenlieb (Cambridge)

Street McGill

International Conference on Continuous Optimization, Lehigh

July 26th, 2022

Image: A math a math

Motivation: Linear Inverse Problems

Canonical Example: $Cx \sim b$

$$\min_{x\in\mathbb{R}^d}\left\{R(x)+\frac{\alpha}{2}F(Cx,b)\right\}$$

- R is a regularizer imposing constraints on the optimizers
- F(Cx, b) is a fidelity term estimating the difference between Cx and b
- Many of these "norms" for regularization and fidelity have interpretations from statistical estimation

Figure: Image deblurring problem of the form $Cx \sim b$, Rioux et al. (2021)

• • • • • • • • • • • •

An Information-Theoretic Approach

$$\min_{x\in\mathbb{R}^d}\left\{R(x)+\frac{\alpha}{2}F(Cx,b)\right\}$$

- How can we choose R and F in a meaningful way?
- Idea: Work at the higher level of the probability distribution of the ground truth *x*.
- Given a prior distribution, P, we want to understand the distribution of the ground truth, Q.
- The Kullback-Leibler (KL) divergence [Kullback, Leibler (1951)] between σ -finite P and $Q \in \mathcal{P}(\Omega)$ is defined by

$$D_{\mathsf{KL}}(Q||P) := egin{cases} \int_{\Omega} \log\left(rac{\mathrm{d}Q}{\mathrm{d}P}
ight) \mathrm{d}Q, & Q \ll P \ +\infty, & ext{otherwise} \end{cases}$$

イロト イボト イヨト イヨ

 Maximum Entropy on the Mean: The state best describing a system is the mean of a distribution maximizing some measure of entropy (à la Principle of Maximum Entropy [Jaynes, 1957])

Definition (MEM Function)

The Maximum Entropy on the Mean (MEM) Function $\kappa_P : \mathbb{R}^d \to (-\infty, \infty]$ is defined by [Rietsch, 1977]:

 $\kappa_P(y) := \inf \left\{ D_{\mathsf{KL}}(Q||P) \mid Q \ll P \text{ with } \mathbb{E}_Q = y \right\}$

- Information-driven approach: Measure compliance of y with P via $\kappa_P(y)$
- Applications: crystallography [Navaza (1985)], seismic tomography [Fermín et al. (2006)], medical imaging [Amblard et al. (2004), Deslauriers-Gauthier et al. (2017), Cai et al. (2022)], image processing [Rioux et al. (2021)]

イロト イヨト イヨト イヨト

The MEM reformulation of our original inverse problem in the least squares setting:

$$\overline{x} = \mathbb{E}_{\overline{Q}}[X], \ \overline{Q} = \operatorname{argmin}_{Q \in \mathcal{P}(\Omega)} \left\{ \mathsf{KL}(Q \| P) + \frac{lpha}{2} \| b - C \mathbb{E}_Q[X] \|_2^2
ight\}.$$

One can equivalently formulate as:

$$\overline{x} = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{\alpha}{2} \| Cy - b \|^2 + \kappa_P(y) \right\}$$

where $\kappa_P(y) = \inf \{ D_{\mathsf{KL}}(Q || P) \mid Q \ll P \text{ with } \mathbb{E}_Q = y \}$ is the MEM function.

・ロト ・日下・ ・ ヨト・

The MEM function is defined by a seemingly intractable problem. How can we use it?

$$\kappa_P(y) := \inf \left\{ D_{\mathsf{KL}}(Q || P) \mid Q \ll P \text{ with } \mathbb{E}_Q = y
ight\}$$

Under some conditions:

$$\kappa_{\mathcal{P}}(y) = \psi_{\mathcal{P}}^*(y) := \sup_{ heta \in \mathbb{R}^d} \left\{ \langle y, heta
angle - \psi_{\mathcal{P}}(heta)
ight\}$$

where $\psi_P(\theta) := \log \int_{\Omega} \exp(\langle y, \theta \rangle) dP(y)$ is the log-normalizer of *P*. The map ψ_P^* is known as Cramér's function (c.f. large deviations theory).

イロト イヨト イヨト イヨ

Legendre Type

Definition (Legendre Type)

A function $\psi \in \Gamma_0$ is essentially smooth if it satisfies the following conditions:

- int(dom ψ) $\neq \emptyset$
- 2 ψ is differentiable on int(dom ψ)
- $\ \, { \ \, } \ \, { \| \nabla \psi(x^k) \| \to \infty \ \, { for \ any } \ \, { \{ x^k \} \subseteq int(\operatorname{dom}\psi) \ \, { such \ that } \ \, x^k \to \bar x \in \partial(\operatorname{dom}\psi) }$

If moreover ψ is strictly convex on $int(dom \psi)$ then ψ is of Legendre type.

$$\underline{Ex:} \text{ The function } f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$$

$$f(x) = \begin{cases} -\log x, \quad x > 0, \\ +\infty, \quad x \le 0, \end{cases}$$

$$1$$

$$1$$

$$1$$

$$2$$

$$1$$

$$1$$

$$2$$

$$3$$

$$-1$$

$$1$$

$$2$$

$$3$$

$$-1$$

$$1$$

$$2$$

$$3$$

$$-1$$

$$1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$3$$

$$-1$$

$$-1$$

$$-1$$

$$-1$$

$$-1$$

Legendre Functions and Conjugacy

Theorem (Rockafellar, 1970)

If $\psi \in \Gamma_0$ is of Legendre type then

- The convex conjugate ψ^* is of Legendre type
- ∇ψ is a bijection from int(dom ψ) to int(dom ψ*) with inverse
 (∇ψ)⁻¹ = ∇ψ*

イロト イヨト イヨト イヨ

Probability Theory

Let ρ be a σ -finite measure on measurable $\Omega \subseteq \mathbb{R}^d$. Some definitions:

- $\Omega_{
 ho} = \operatorname{supp}(
 ho)$ (support of ho)
- $\Omega_{\rho}^{cc} = cl(conv \, \Omega_{\rho})$ (convex support of ρ)

1

We consider two cases:

- $(\Omega = \mathbb{R}^d, \nu = \text{Lebesgue})$
- **2** (Ω ⊆ \mathbb{R}^d , ν = Counting)

Define $\mathcal{P}(\Omega) := \{P \text{ probability measure on } \Omega \mid P \ll \nu\}.$ Each such P has Radon-Nikodym Derivative $f_P := \frac{\mathrm{d}P}{\mathrm{d}\nu}$, expected value \mathbb{E}_P , and moment-generating function¹ M_P :

$$\mathbb{E}_{\mathcal{P}} := \int_{\Omega} y d \mathcal{P}(y) \in \mathbb{R}^d$$
 $M_{\mathcal{P}}(heta) := \int_{\Omega} \exp(\langle y, heta
angle) d \mathcal{P}(y)$

¹We assume int(dom M_P) $\neq \emptyset$

A D F A A F F A

Exponential Families

Let P be σ -finite, $P \ll \nu$. The natural parameter space for P is defined by

$$\Theta_P := \left\{ \theta \in \mathbb{R}^d \mid M_P(\theta) = \int_{\Omega} \exp(\langle y, \theta \rangle) dP(y) < \infty \right\}$$

Definition (Log-Normalizer)

The function $\psi_P \colon \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ by

$$\psi_{\mathcal{P}}(heta) = egin{cases} \log M_{\mathcal{P}}(heta), & heta \in \Theta_{\mathcal{P}} \ +\infty, & heta
otin \Theta_{\mathcal{P}} \ \theta_{\mathcal{P}} \end{cases}$$

is called the log-normalizer.

Definition (Exponential Family)

The standard exponential family generated by P is

$$\mathcal{F}_{\mathcal{P}} := \{ f_{\mathcal{P}_{ heta}}(y) := \exp(\langle y, heta
angle - \psi_{\mathcal{P}}(heta)) \mid heta \in \Theta_{\mathcal{P}} \}$$

Exponential Family Properties

We assume int $\Theta_P \neq \emptyset$, int $\Omega_P^{cc} \neq \emptyset$ (an exponential family satisfying this is called minimal)

Theorem (Regularity of ψ_P , Brown 1986)

Let \mathcal{F}_P be a minimal exponential family. Then:

- **(**) The log-normalizer ψ_P is strictly convex on the convex set Θ_P
- $\psi_{P} \in C^{\infty}(\operatorname{int} \Theta_{P}), \ \nabla \psi_{P}(\theta) = \mathbb{E}_{P_{\theta}}$

If ψ_P is essentially smooth we say \mathcal{F}_P is steep. Conclusion: If \mathcal{F}_P is minimal and steep then ψ_P is of Legendre type.

Corollary (Mean Value Parametrization)

The natural parameter θ can be expressed as

$$\theta = \nabla \psi_P^*(\mu)$$

where $\mu = \mathbb{E}_{P_{\theta}} = \nabla \psi_{P}(\theta)$.

イロト イヨト イヨト イヨ

Domain of Cramér Function vs. MEM Function

Theorem (Domain of ψ_P^* , Barndorff-Nielsen 1978)

Suppose $P \in \mathcal{P}(\Omega)$ generates a minimal and steep exponential family. Then:

 $\operatorname{int} \Omega_P^{cc} \subseteq \operatorname{dom} \psi_P^* \subseteq \Omega_P^{cc}$

Moreover, the following hold:

- If Ω_P is finite then dom $\psi_P^* = \Omega_P^{cc}$
- 2 If Ω_P is countable then dom $\psi_P^* \supseteq \operatorname{conv} \Omega_P$
- If Ω_P is uncountable then dom $\psi_P^* = \operatorname{int} \Omega_P^{cc}$

Theorem (Domain of κ_P , Vaisbourd et al.)

Suppose P satisfies the same assumptions above. Then:

- If Ω_P is countable then dom $\kappa_P = \operatorname{conv} \Omega_P$
- If Ω_P is uncountable then dom $\kappa_P = \operatorname{int} \Omega_P^{cc}$

イロト イヨト イヨト イ

Given ψ of Legendre type, its Bregman divergence is:

$$D_{\psi}(y,x) := \psi(y) - \psi(x) - \langle
abla \psi(x), y - x
angle$$

Lemma (MEM Upper Bound, Vaisbourd et al.)

Suppose $P \in \mathcal{P}(\Omega)$ generates a minimal and steep exponential family. Then:

$$\psi_{\mathcal{P}}^{*}(y) \leq \kappa_{\mathcal{P}}(y) \leq \psi_{\mathcal{P}}^{*}(y) + D_{\mathcal{KL}}(Q||P_{\theta}) - D_{\psi_{\mathcal{P}}^{*}}(y, \nabla\psi_{\mathcal{P}}(\theta))$$

for any $y \in \operatorname{dom} \kappa_P$, $Q \ll P$ with $\mathbb{E}_Q = y$, and $\theta \in \operatorname{int} \Theta_P$. Recall P_{θ} is defined by density $f_{P_{\theta}} = \exp(\langle \cdot, \theta \rangle - \psi_P(\theta)) \in \mathcal{F}_P$.

Proof of equality: If $y \in \operatorname{int} \Omega_P^{cc}$ then $\exists \theta \in \operatorname{int} \Theta_P$ s.t. $y = \nabla \psi_P(\theta) = \mathbb{E}_{P_{\theta}}$. Now take $Q = P_{\theta}$ above. \Box

What if y is on the boundary?

(日) (四) (日) (日) (日)

Theorem (Equality Conditions, Vaisbourd et al.)

Suppose $P \in \mathcal{P}(\Omega)$ generates a minimal and steep exponential family. Moreover, suppose one of the following holds:

- Ω_P is uncountable
- Ω_P is countable and conv Ω_P is closed

Then $\kappa_P = \psi_P^*$. In particular, κ_P is closed, proper, and convex.

Remark: If $P \in \mathcal{P}(\Omega)$ is separable in the sense that $P = P_1 \times P_2 \times \cdots \times P_d$ then $M_P(\theta) = \prod_{i=1}^d M_{P_i}(\theta_i)$. Hence:

$$egin{aligned} &\psi_{\mathcal{P}}^{*}(y) = \sup_{ heta \in \mathbb{R}^{d}} \left\{ \langle y, heta
angle - \log M_{\mathcal{P}}(heta)
ight\} \ &= \sum_{i=1}^{d} \sup_{ heta_{i} \in \mathbb{R}} \left\{ y_{i} heta_{i} - \log M_{\mathcal{P}_{i}}(heta_{i})
ight\} \end{aligned}$$

Upshot: Suffices to compute scalar Cramér functions.

< □ > < 同 > < 回 > < Ξ > < Ξ

Examples

Reference Distribution (P)	Cramér Rate Function $(\psi_P^*(y))$	dom ψ_P^*
$Multivariate \ Normal \\ \mu \in \mathbb{R}^d, \mathbf{\Sigma} \in \mathbb{S}^d, \mathbf{\Sigma} \succ 0$	$\tfrac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)$	\mathbb{R}^{d}
Poisson ($\lambda \in \mathbb{R}_{++}$)	$y\log(y/\lambda)-y+\lambda$	\mathbb{R}_+
Gamma ($lpha,eta\in\mathbb{R}_{++}$)	$eta \mathbf{y} - lpha + lpha \log\left(rac{lpha}{eta \mathbf{y}} ight)$	\mathbb{R}_{++}
$\begin{array}{l} \text{Normal-inverse Gaussian}\\ \alpha,\beta,\delta\in\mathbb{R}\colon\alpha\geq \beta ,\\ \delta>0,\gamma:=\sqrt{\alpha^2-\beta^2} \end{array}$	$\alpha\sqrt{\delta^2+(y-\mu)^2}-eta(y-\mu)-\delta\gamma$	$\mathbb R$
$Multinomial\ (p\in \Delta_d, n\in\mathbb{N})$	$\sum_{i=1}^{d} y_i \log\left(\frac{y_i}{np_i}\right)$	$n\Delta_d \cap I(p)^2$

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic, Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial), Negative Binomial & Shifted Geometric (via Negative Multinomial).

$${}^{2}I(p) := \{x \in \mathbb{R}^{d} \mid x_{i} = 0 \text{ if } p_{i} = 0\}$$

Ariel Goodwin (McGill)

イロト イヨト イヨト イヨ

The MEM Estimator

Maximum likelihood (ML) is a popular principle of statistical estimation

$$\theta_{ML} = \theta_{ML}(\hat{y}, F_{\Theta}, S) := \operatorname{argmax}_{\theta \in S \cap \Theta} \left\{ \log f_{P_{\theta}}(\hat{y}) \right\}$$

where:

- $S \subseteq \mathbb{R}^d$ are admissible parameters
- F_{Θ} parameterized family of distributions $P_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d$ with densities $f_{P_{\theta}}$
- $\hat{y} \in \mathbb{R}^d$ is a sample of observed data

Definition/Theorem (Vaisbourd et al.)

The MEM estimator $y_{MEM} \in \mathbb{R}^d$ is defined by:

$$y_{MEM} = y_{MEM}(\hat{y}, F_{\Theta}, S^*) := \operatorname{argmin}_{y \in S^*} \left\{ \psi_{P_{\hat{\theta}}}^*(y) \right\}$$

where $P_{\hat{\theta}} \in F_{\Theta}$ is such that $\hat{y} = \mathbb{E}_{P_{\hat{\theta}}}$. The existence and uniqueness of y_{MEM} is guaranteed under some mild assumptions.

イロト イヨト イヨト イ

Linear Models

- Bioinformatics, Image Processing, Machine Learning, ...
- $C \in \mathcal{C} \subseteq \mathbb{R}^{m \times d}$ (dictated by the problem)
- $F_{\Theta} = \{P_{\theta} \mid \theta \in \Theta \subseteq \mathbb{R}^m\} \subseteq \mathcal{P}(\Omega)$

Reference distribution $P_{\hat{\theta}}$ is specified via $\hat{y} = \mathbb{E}_{P_{\hat{\theta}}}$ where \hat{y} is our observation vector. Thus the MEM estimator of the linear model is:

$$\operatorname{argmin}_{x \in X} \left\{ \psi^*_{P_{\hat{\theta}}}(Cx) \right\}, \quad (C \in \mathcal{C}, \hat{\theta} \in \Theta \colon \mathbb{E}_{P_{\hat{\theta}}} = \hat{y})$$

Reference Family	Objective Function $(\psi^*_{\mathcal{P}_{\hat{ heta}}} \circ \mathcal{C})$
Normal	$\tfrac{1}{2} \ \mathcal{C} x - \hat{y} \ ^2$
Poisson	$\sum_{i=1}^{m} [\langle c_i, x \rangle \log(\langle c_i, x \rangle / \hat{y}_i) - \langle c_i, x \rangle + \hat{y}_i]$
Gamma ($eta=1$)	$\sum_{i=1}^{m} [\langle c_i, x \rangle - \hat{y}_i \log(\langle c_i, x \rangle) - (\hat{y}_i - \hat{y}_i \log \hat{y}_i)]$

Regularize to create well-posed problem:

$$\min_{x\in X} \left\{ \psi_{P_{\hat{\theta}}}^*(Ax) + \varphi(x) \right\}, \quad (A \in \mathcal{C}, \hat{\theta} \in \Theta \colon \mathbb{E}_{P_{\hat{\theta}}} = \hat{y})$$

- Here $\varphi \colon \mathbb{R}^d \to (-\infty,\infty]$ is closed, proper, convex.
- We can use Cramér's function to regularize
- Take $R \in \mathcal{P}(\Omega)$ as a prior distribution encoding info about the desired solution

$$\min_{x\in X}\left\{\psi_{P_{\hat{\theta}}}^{*}(Cx)+\psi_{R}^{*}(x)\right\}$$

Image: A math the second se

QR code image deblurring:

$$\min_{x\in\mathbb{R}^d}\left\{\frac{1}{2}\|Ax-\hat{y}\|_2^2+\kappa_R(x)\right\}$$

- \hat{y} blurred and noisy image
- A blurring matrix
- R reference distribution (Bernoulli)

Fig. 11. Out of focus image of a QR code.

Fig. 12. Result of applying our method to a processed version of Fig. 11.

Figure: From Rioux et al. (2021)

A D F A A F F A

Regularized model falls into the additive composite framework:

 $\min_{x\in\mathbb{R}^d}\left\{f(x)+g(x)\right\}$

The Bregman proximal gradient algorithm is specified by a kernel function h that [Bauschke et al. (2017)]:

• is smooth adaptable w.r.t. f(Lh - f is convex for some L > 0)

• induces a computationally tractable Bregman proximal operator with respect to g

Definition (Bregman Proximal Operator)

Let $g, h: \mathbb{R}^d \to (-\infty, +\infty]$ such that g is proper and closed, and h is Legendre type. Then for $\bar{x} \in int(\text{dom } h)$ we define the Bregman proximal operator to be

$$\operatorname{prox}_g^h(\bar{x}) := \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ g(x) + D_h(x, \bar{x}) \right\}$$

イロン イロン イヨン イヨン

Algorithm 1: Bregman Proximal Gradient (BPG) Method

Input: Set $t \in (0, 1/L]$ and $x^0 \in int(dom h)$. for k = 0, 1, 2, ... do $| x^{k+1} = prox_{tg}^h (\nabla h^* (\nabla h(x^k) - t \nabla f(x^k)));$ end

- $h = \frac{1}{2} \| \cdot \|_2^2$ proximal gradient method
- $h = \frac{1}{2} \| \cdot \|_2^2$, $g = \delta_s$ gradient projection method
- $h = \frac{1}{2} \| \cdot \|_2^2$, g = 0 gradient descent method

Other variants and methods (acceleration, decomposition) rely on the same operators we derive in this work.

イロト イヨト イヨト イヨト

Bregman Proximal Operators

Reference Distribution	Proximal Operator	Kernel $(h(x))$
Multivariate Normal $\mu \in \mathbb{R}^d, \mathbf{\Sigma} \in \mathbb{S}^d, \mathbf{\Sigma} \succ 0$	$x^+ = (tl + \Sigma)^{-1} (\Sigma \bar{x} + t\mu)$	$(1/2) \ x\ _2^2$
Gamma ($lpha, eta \in \mathbb{R}_{++}$)	$x^+ = \left(ar{x} - teta + \sqrt{(ar{x} - teta)^2 + 4tlpha} ight)/2$	$(1/2) \ x\ _2^2$
Laplace $(\mu \in \mathbb{R}, \ b \in \mathbb{R}_{++})$	$x^{+} = \begin{cases} \mu, & \mu = \bar{x}, \\ \mu + b\rho, & \mu \neq \bar{x}, \end{cases}$ where ρ is the unique real root of a cubic ³	$-\sum \log x_i$
Poisson () $\in \mathbb{R}^{+}$	$\mathbf{v}^+ - (\mathbf{\bar{v}})^{\frac{1}{t+1}}$	
1 0133011 (X C ±2++)		
$Multinomial\;(p\in\Delta_d,n\in\mathbb{N})$	$x^{+} = \left(\frac{n(np_{i})^{\frac{t}{t+1}}\bar{x}_{i}^{\frac{1}{t+1}}}{\sum_{i=1}^{d}(np_{i})^{\frac{t}{t+1}}\bar{x}_{i}^{\frac{1}{t+1}}}\right)_{i=1}^{a}$	$\sum x_i \log x_i$

In addition: Normal-inverse Gaussian, Negative Multinomial, Continuous/Discrete Uniform, Logistic, Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial), Negative Binomial & Shifted Geometric (via Negative Multinomial) for each each choice of *h* shown.

³With closed-form coefficients dependent on b, μ, \bar{x}, t

Ariel Goodwin (McGill)

July 26th, 2022 22 / 2

• • • • • • • • • • • •

- MEM is a very useful tool for the incorporation of prior information into models for inverse problems.
- While much of the theory appears in the literature and was historically applied to a few inverse problems, it seems to have been forgotten.
- Revisit the theory and experiment with solving regularized MEM linear models.
- arXiv preprint and computational toolbox of Cramér functions, prox operators, and algorithms, to appear online shortly.
- Ongoing work: Obtain the Cramér function (or log-MGF) via deep learning.

< □ > < 同 > < 回 > < Ξ > < Ξ