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Convexity

C ⊆ E is convex if λx + (1− λ)y ∈ C for x , y ∈ C , λ ∈ (0, 1)

x

y

λx+ (1− λ)y

f (x , y) = |x |+ y2

f : E → (−∞,+∞] is convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ∀x , y ∈ E, λ ∈ (0, 1)
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Convex Optimization

min
x∈C

f (x)

f : E → (−∞,+∞] and C ⊆ E are both convex

Examples:

1 Linear programming (network flow)

2 Convex quadratic programming (regularized least squares)

3 Semidefinite programming (approximations for NP-hard problems)

4 Lagrangian relaxation (lower bounds for nonconvex problems)

Many smooth problems can be solved efficiently. . .

. . . and can use subgradient methods for structured nonsmooth problems
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Euclidean Space is Nice

Euclidean spaces benefit from duality; (sub)gradients are dual objects
v ∈ E is a subgradient of f : E → (−∞,+∞] at x if

f (y) ≥ f (x) + ⟨v , y − x⟩ for all y ∈ E

Inner product: convex functions and optimization problems come in pairs

Riemannian manifolds: inner product on tangent space ⇒ subgradients

Can we succeed in spaces without local linearity?
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Structure for Convex Optimization

Nonlinear spaces occur naturally in modeling various phenomena

Suppose (X , d) is a metric space.

1 What does convexity mean in X , and what functions are convex?

2 What structure should X have to sustain convex optimization?

N

S

Sn with angular metric :

cos(d(x , y)) = ⟨x , y⟩
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Hadamard Space

A complete metric space (X , d) where points connect via geodesics
(isometries of compact intervals into X ) that is CAT(0), meaning d(·, y)2
is strongly convex for all y ∈ X , i.e.

t 7→ d(γ(t), y)2 − t2 is convex for any geodesic γ

CAT(κ) = “curvature bounded above by κ”

Triangles in CAT(0) spaces are skinny

Cosine law: a = d(p, q), b = d(p, r), c = d(q, r),

c2 ≥ a2 + b2 − 2ab cos(∠([p, q], [p, r ]))
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Hyperbolic Space Hn

The open unit ball Bn ⊆ Rn with cosh(d(x , y)) = 1 + 2∥x−y∥2
(1−∥x∥2)(1−∥y∥2)
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Geodesics are circular arcs intersecting boundary at right angles

Applications: Hierarchical data embedding (De Sa. . . ’18), large-margin
classification (Cho. . . ’18)
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Positive Definite Cone Sn
++

n × n positive definite matrices with d(X ,Y ) = ∥ log(X−1/2YX−1/2)∥Frob

[
x y
y z

]
≻ 0

⇕
x + z > 0 and xz − y2 > 0

Why not Euclidean metric? Can also add det(X ) = 1 constraint

Applications: Matrix means (Bhatia. . . ’12), diffusion tensor imaging
(Pennec. . . ’06)
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Real Trees

Geodesic space where every triangle is a tripod

Ex: Trees (connected acyclic graphs) with positive real edge lengths

Applications: Facility location (Hansen. . . ’87)
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CAT(0) Cubical Complexes

A complex X of cells – Euclidean cubes and their faces – each pair of
cells sharing at most one face – is CAT(0) ⇐⇒ simply connected and
link condition holds (Gromov ’81)

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective � attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ �(x) ≤ �(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n
.

Example: circumcenter of three points in a cubical complex
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(1, 1)

(1 + ε, 1 + ε)

(1− ε, 1− ε)

L

Applications: Phylogenetics (Billera-Holmes-Vogtmann ’01), robot
configurations (Ardila-Mantilla ’20)
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Basic Notions in Hadamard Space

C ⊆ X is convex if it contains all geodesics between its points

The convex hull of A ⊆ X is the smallest convex set containing A

A function is convex if it is convex along every geodesic

Any two points are connected by a unique geodesic

Q: Convex hull of {x , y}?

A: The geodesic segment [x , y ]

A geodesically convex set in Hn
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Pulse Check

Projections onto closed convex subsets exist uniquely (Yes)

The closed convex hull of finitely many points is compact (?)

The convex hull of n points is at most n − 1 dimensional (No)

Real-valued convex functions are continuous (No)

Balls are convex (Yes)

C ⊆ X is Chebyshev if each x ∈ X has a unique closest point in C .
Are closed Chebyshev sets convex? (? in Hilbert, No in Hadamard)

Geodesics extend uniquely to rays (No)
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Weighted Means in Hadamard Space
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Natural Questions

Let (X , d) be a Hadamard space, and let A = {a1, . . . , am} ⊆ X .

1 What does the convex hull of A look like?

2 Can we compute weighted means of A, defined by

argmin
x∈X

∑
a

wad(x , a)
2

where w ≥ 0?

3 How quickly can we solve these problems?
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Medians of Phylogenetic Trees

Given several binary trees, how to compare or average them?

The BHV Tree Space Tn is a metric space whose points are binary trees
on n (labelled) leaves, with n − 2 non-negative internal edge lengths

Tn is Hadamard – it’s a CAT(0) cubical complex

(−3,−1/2)

(1, 2)

(2,−3/2)

a b
c d

a
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d

a b

c

d

(1, 1)

(1 + ε, 1 + ε)

(1− ε, 1− ε)

L

Geodesics are computable in polynomial time (Owen-Provan ’12)
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Averaging Finite Sets

In Euclidean space, can characterize convex hulls of finite sets:

x ∈ convA ⇐⇒ there exists 0 ̸= w ≥ 0 : x minimizes
∑
a

wad(·, a)2

Theorem 1 (Weighted averages vs convex combinations)

A point x̄ minimizes
∑

a wad(·, a)2 for some weight vector 0 ̸= w ≥ 0 if
and only if x̄ minimizes the test function maxa {d(·, a)− d(x̄ , a)}. In
that case x̄ ∈ convA (but the converse fails outside Rn).
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Recognizing Weighted Means

Strategy: Quantify whether x̄ is a mean of A by computing an optimality
measure of the convex test function maxa {d(·, a)− d(x̄ , a)}
Assume geodesics [x̄ , a] extend to rays. These rays, traversed at speed
d(x̄ , a), give rise to “cone of tangents” Tx̄X ([x̄ , a] is a tangent). If
Tx̄X ∼= Rn (e.g. X is a manifold) then the test function has slope

dist
(
0, conv

{
[x̄ , a] | a ∈ A

})

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective � attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ �(x) ≤ �(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n
.

Example: circumcenter of three points in a cubical complex
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Detecting Mean Sets

−1.0

−0.5

0.0

0.5

1.0

0.00.51.0

0.0

0.5

1.0

18 / 23



Convex Optimization on Cubical Complexes
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Computing Means

Mean of A: x̄ = argminy∈X
∑

a d(y , a)
2 =: ϕ(y)

Restrict ourselves to CAT(0) cubical complexes. Can we compute means?
Yes, but very slowly. . . cyclic algorithm (Bačák ’14)

for k = 1, 2, . . . x ∈ k
k+1x + 1

k+1 {a, b, c}

Geodesics are polynomial time (Hayashi ’21)

Cells are typically low-dimensional

Algorithm: Given current point x and list Ω of optimized cells
repeat

Choose cell P ̸∈ Ω containing x

x = argminP ϕ ???
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A Single Subgradient

Strategy: Solve a Euclidean optimization problem on each cell using good
subgradient algorithms (cutting plane methods)

In CAT(0) cubical complex, consider points a ̸= x ∈ cell P ⊆ Rn

Idea: at x , find a (Euclidean) subgradient for the function

z ∈ Rn 7→
{
d(z , a), z ∈ P

+∞, z /∈ P

Solution: Suppose geodesic [x , a] has initial segment [x , y ] in cell Q.
Project y onto its nearest point z in the face F shared by P and Q. Then
one subgradient at x is

cos(∠yxz)
x − z

∥x − z∥

21 / 23



Fast Mean Computation

Minimize over cell P

d(·, a)2 + d(·, b)2 + d(·, c)2

Compare cutting planes vs cyclic
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For the Curious

For those interested in. . .

Optimization: Convex Analysis and Optimization on Hadamard
Spaces, M. Bačák

Geometric Group Theory, Topology: Metric Spaces of
Non-Positive Curvature, M. Bridson and A. Haefliger

Probability: Probability Measures on Metric Spaces of Nonpositive
Curvature, K.-T. Sturm

Recent work with A.S. Lewis, G. López-Acedo, and A. Nicolae:

Recognizing weighted means in geodesic spaces (arXiv:2406.03913)

Convex optimization on CAT(0) cubical complexes
(arXiv:2405.01968)
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