An Invitation to Hadamard Space

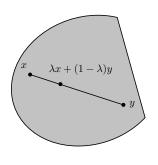
Ariel Goodwin

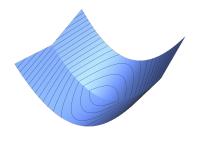
Applied Mathematics Student Colloquium

November 13th 2024

Convexity

$$C \subseteq \mathbb{E}$$
 is **convex** if $\lambda x + (1 - \lambda)y \in C$ for $x, y \in C, \lambda \in (0, 1)$





$$f(x,y) = |x| + y^2$$

$$f: \mathbb{E} \to (-\infty, +\infty]$$
 is **convex** if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y \in \mathbb{E}, \lambda \in (0, 1)$$

Convex Optimization

$$\min_{x\in C}f(x)$$
 $f\colon\mathbb{E}\to(-\infty,+\infty]$ and $C\subseteq\mathbb{E}$ are both convex

Examples:

- Linear programming (network flow)
- Convex quadratic programming (regularized least squares)
- Semidefinite programming (approximations for NP-hard problems)
- Lagrangian relaxation (lower bounds for nonconvex problems)

Many **smooth** problems can be solved efficiently...

...and can use subgradient methods for structured nonsmooth problems

Euclidean Space is Nice

Euclidean spaces benefit from duality; (sub)gradients are dual objects $v \in \mathbb{E}$ is a subgradient of $f : \mathbb{E} \to (-\infty, +\infty]$ at x if

$$f(y) \ge f(x) + \langle v, y - x \rangle$$
 for all $y \in \mathbb{E}$

Inner product: convex functions and optimization problems come in pairs

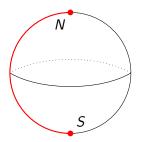
Riemannian manifolds: inner product on tangent space \Rightarrow subgradients

Can we succeed in spaces without local linearity?

Structure for Convex Optimization

Nonlinear spaces occur naturally in modeling various phenomena Suppose (X, d) is a metric space.

- What does convexity mean in X, and what functions are convex?
- $oldsymbol{0}$ What structure should X have to sustain convex optimization?



 \mathbb{S}^n with angular metric:

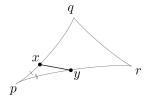
$$\cos(d(x,y)) = \langle x,y \rangle$$

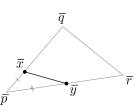
Hadamard Space

A **complete** metric space (X, d) where points connect via **geodesics** (isometries of compact intervals into X) that is **CAT(0)**, meaning $d(\cdot, y)^2$ is strongly convex for all $y \in X$, i.e.

$$t\mapsto d(\gamma(t),y)^2-t^2$$
 is convex for any geodesic γ

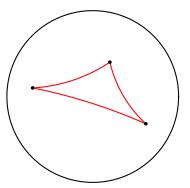
- CAT(κ) = "curvature bounded above by κ "
- Triangles in CAT(0) spaces are skinny
- Cosine law: a = d(p, q), b = d(p, r), c = d(q, r), $c^2 \ge a^2 + b^2 - 2ab\cos(\angle([p, q], [p, r]))$





Hyperbolic Space \mathbb{H}^n

The open unit ball $B^n \subseteq \mathbb{R}^n$ with $\cosh(d(x,y)) = 1 + \frac{2\|x-y\|^2}{(1-\|x\|^2)(1-\|y\|^2)}$

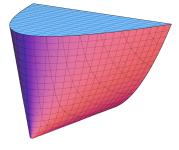


Geodesics are circular arcs intersecting boundary at right angles

Applications: Hierarchical data embedding (De Sa...'18), large-margin classification (Cho...'18)

Positive Definite Cone S_{++}^n

 $n \times n$ positive definite matrices with $d(X,Y) = \|\log(X^{-1/2}YX^{-1/2})\|_{\mathsf{Frob}}$



$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \succ 0$$

$$\updownarrow$$

$$x + z > 0$$
 and $xz - y^2 > 0$

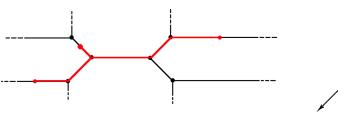
Why not **Euclidean metric**? Can also add det(X) = 1 constraint

Applications: Matrix means (Bhatia...'12), diffusion tensor imaging (Pennec...'06)

Real Trees

Geodesic space where every triangle is a tripod

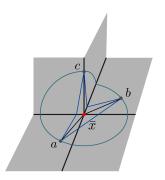
Ex: Trees (connected acyclic graphs) with positive real edge lengths

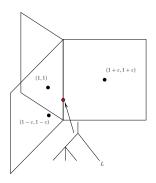


Applications: Facility location (Hansen...'87)

CAT(0) Cubical Complexes

A complex X of cells – Euclidean cubes and their faces – each pair of cells sharing at most one face – is $CAT(0) \iff$ simply connected and link condition holds (Gromov '81)





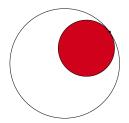
Applications: Phylogenetics (Billera-Holmes-Vogtmann '01), robot configurations (Ardila-Mantilla '20)

Basic Notions in Hadamard Space

- $C \subseteq X$ is **convex** if it contains all geodesics between its points
- The **convex hull** of $A \subseteq X$ is the smallest convex set containing A
- A function is **convex** if it is convex along every geodesic
- Any two points are connected by a unique geodesic

Q: Convex hull of $\{x, y\}$?

A: The geodesic segment [x, y]



A geodesically convex set in \mathbb{H}^n

Pulse Check

- Projections onto closed convex subsets exist uniquely (Yes)
- The closed convex hull of finitely many points is compact (?)
- The convex hull of n points is at most n-1 dimensional (No)
- Real-valued convex functions are continuous (No)
- Balls are convex (Yes)
- $C \subseteq X$ is Chebyshev if each $x \in X$ has a unique closest point in C. Are closed Chebyshev sets convex? (? in Hilbert, No in Hadamard)
- Geodesics extend uniquely to rays (No)

Weighted Means in Hadamard Space

Natural Questions

Let (X, d) be a Hadamard space, and let $A = \{a_1, \ldots, a_m\} \subseteq X$.

- What does the convex hull of A look like?
- 2 Can we compute **weighted means** of A, defined by

$$\underset{x \in X}{\operatorname{argmin}} \sum_{a} w_{a} d(x, a)^{2}$$

where w > 0?

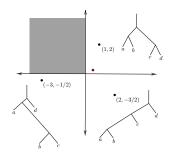
Mow quickly can we solve these problems?

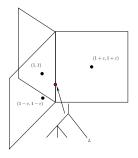
Medians of Phylogenetic Trees

Given several binary trees, how to compare or average them?

The BHV Tree Space \mathcal{T}_n is a metric space whose points are binary trees on n (labelled) leaves, with n-2 non-negative internal edge lengths

 \mathcal{T}_n is Hadamard – it's a CAT(0) cubical complex





Geodesics are computable in polynomial time (Owen-Provan '12)

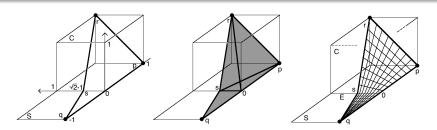
Averaging Finite Sets

In Euclidean space, can characterize convex hulls of finite sets:

$$x \in \operatorname{conv} A \iff \operatorname{there} \operatorname{exists} 0 \neq w \geq 0 : x \operatorname{minimizes} \sum_{a} w_a d(\cdot, a)^2$$

Theorem 1 (Weighted averages vs convex combinations)

A point \bar{x} minimizes $\sum_a w_a d(\cdot, a)^2$ for some weight vector $0 \neq w \geq 0$ if and only if \bar{x} minimizes the **test function** $\max_a \{d(\cdot, a) - d(\bar{x}, a)\}$. In that case $\bar{x} \in \text{conv } A$ (but the converse fails outside \mathbb{R}^n).

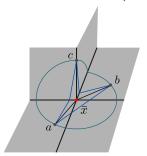


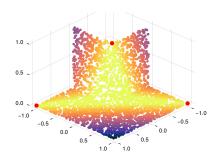
Recognizing Weighted Means

Strategy: Quantify whether \bar{x} is a mean of A by computing an *optimality* measure of the convex test function $\max_a \{d(\cdot, a) - d(\bar{x}, a)\}$

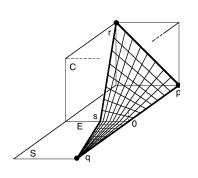
Assume geodesics $[\bar{x}, a]$ extend to rays. These rays, traversed at speed $d(\bar{x}, a)$, give rise to "cone of tangents" $T_{\bar{x}}X$ ($[\bar{x}, a]$ is a **tangent**). If $T_{\bar{x}}X \cong \mathbb{R}^n$ (e.g. X is a manifold) then the test function has **slope**

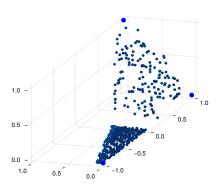
$$\mathsf{dist}\left(0,\mathsf{conv}\left\{\underline{[\bar{x},a]}\mid a\in A\right\}\right)$$





Detecting Mean Sets





Convex Optimization on Cubical Complexes

Computing Means

Mean of A:
$$\bar{x} = \operatorname{argmin}_{y \in X} \sum_{a} d(y, a)^2 =: \phi(y)$$

Restrict ourselves to CAT(0) cubical complexes. Can we compute means? Yes, but very slowly...cyclic algorithm (Bačák '14)

for
$$k = 1, 2, \dots \ x \in \frac{k}{k+1}x + \frac{1}{k+1}\{a, b, c\}$$

Geodesics are polynomial time (Hayashi '21)

Cells are typically low-dimensional

Algorithm: Given current point x and list Ω of optimized cells **repeat**

- Choose cell $P \notin \Omega$ containing x
- $x = \operatorname{argmin}_{P} \phi$???

A Single Subgradient

Strategy: Solve a Euclidean optimization problem on each cell using good subgradient algorithms (cutting plane methods)

In CAT(0) cubical complex, consider points $a \neq x \in \text{cell } P \subseteq \mathbb{R}^n$

Idea: at x, find a (Euclidean) **subgradient** for the function

$$z \in \mathbb{R}^n \mapsto \begin{cases} d(z,a), & z \in P \\ +\infty, & z \notin P \end{cases}$$

Solution: Suppose geodesic [x, a] has initial segment [x, y] in cell Q. Project y onto its nearest point z in the face F shared by P and Q. Then one subgradient at x is

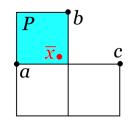
$$\cos(\angle yxz)\frac{x-z}{\|x-z\|}$$

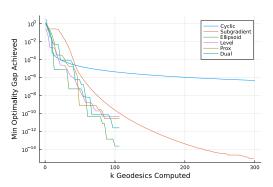
Fast Mean Computation

Minimize over cell P

$$d(\cdot,a)^2+d(\cdot,b)^2+d(\cdot,c)^2$$

Compare cutting planes vs cyclic





For the Curious

For those interested in. . .

- Optimization: Convex Analysis and Optimization on Hadamard Spaces, M. Bačák
- Geometric Group Theory, Topology: Metric Spaces of Non-Positive Curvature, M. Bridson and A. Haefliger
- Probability: Probability Measures on Metric Spaces of Nonpositive Curvature, K.-T. Sturm

Recent work with A.S. Lewis, G. López-Acedo, and A. Nicolae:

- Recognizing weighted means in geodesic spaces (arXiv:2406.03913)
- Convex optimization on CAT(0) cubical complexes (arXiv:2405.01968)