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These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 Conservative Vector Fields

Recall that a C1 vector field F : Ω ⊆ Rn → Rn is conservative if there exists
a C1 function f : Ω → R such that F(x) = ∇f(x) for all x ∈ Ω. Conservative
vector fields have many nice properties that we already know: line integrals of
conservative vector fields obey a fundamental theorem of calculus (in particular,
they depend only on the endpoints of the curve), and their curl is zero (whenever
curl is defined, e.g. n = 2, 3). Note that the curl of a vector field F = (P,Q) on
R2 is taken to be Qx − Py (reminds us of Green’s theorem).

This gives us some methods for checking if a vector field is not conservative
(non-zero curl or two distinct values for line integrals with different curves but
the same endpoints). We have an example showing that being conservative is
not equivalent to zero curl:

F(x, y, z) =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
, ∀(x, y, z) ∈ R3 \ Rz

where Rz is the z-axis. It would be nice if zero curl implied conservative. It
turns out that for a large class of vector fields defined on certain regions that
this is the case.

Definition 1: Convexity

A set C ⊆ Rn is convex if λx+ (1− λ)y ∈ C for all x, y ∈ C, λ ∈ [0, 1].

This definition says that for any two points x, y in a convex set C, the line
connecting x to y is contained in C. Convex sets are very natural, and drawing
some pictures allows us to get a feel for them.
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As an aside, convexity is a simple notion with many deep consequences through-
out mathematics. The study of convex sets and functions forms the basis of
convex analysis, a rich geometric tool that finds much use in optimization, for
example.
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Theorem 1: Conditions for Conservative Fields

Let Ω ⊆ R3 be convex, let W = Ω \ {p1, . . . , pk} where p1, . . . , pk is a
finite collection of points in Ω and suppose F : W → R3 is C1. Then the
following are equivalent:

a) For any oriented simple closed curve γ ⊆W ,
∫
γ

F · ds = 0.

b)
∫
γ1

F · ds =
∫
γ2

F · ds for any oriented simple curves γ1, γ2 ⊆ W
that share the same endpoints.

c) F is conservative, i.e., F = ∇f for some C1 function f on W .
d) curl F = 0

We remark that this theorem holds more generally if Ω is assumed only to
be simply connected rather than convex, which is significantly weaker. The
topological notion of simple connectivity is beyond the scope of this course,
however.

Exercise 1. Determine if the following vector fields are conservative, and if so
find a corresponding f .

a) F(x, y) = (cosxy − xy sinxy,−x2 sinxy)

b) F(x, y) = (x
√
x2y2 + 1, y

√
x2y2 + 1)

c) F(x, y) = (2x cos y + cos y,−x2 sin y − x sin y)

Exercise 2. Let F(x, y, z) = (2xyz + sinx, x2z, x2y). Find a function f such
that F = ∇f .

Exercise 3. Suppose F = (F1, F2, F3) where Fi(tx, ty, tz) = tFi(x, y, z) for all
t ∈ R, (x, y, z) ∈ R3. Suppose also that curl F = 0. Prove that F = ∇f , where

f(x, y, z) =
1

2
(xF1(x, y, z) + yF2(x, y, z) + zF3(x, y, z))

Hint: Use Assignment 2, Q4.

Exercise 4. Let F(x, y, z) = (ex sin y, ex cos y, z2). Compute
∫
γ

F · ds where

γ(t) = (
√
t, t3, e

√
t) for 0 ≤ t ≤ 1.

Exercise 5. Prove that if F = (F1, F2, F3) is a C1 vector field on R3 with
div F = 0 then there exists a C1 vector field G with F = curl G. Hint: Define
G = (G1, G2, G3) by

G1(x, y, z) =

∫ z

0

F2(x, y, t)dt−
∫ y

0

F3(x, t, 0)dt

G2(x, y, z) = −
∫ z

0

F1(x, y, t)dt

G3(x, y, z) = 0
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