These notes were prepared by Ariel Goodwin for MATH 248 at McGill University as taught by Pengfei Guan.

## 1 Conservative Vector Fields

Recall that a  $C^1$  vector field  $\mathbf{F}: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$  is conservative if there exists a  $C^1$  function  $f: \Omega \to \mathbb{R}$  such that  $\mathbf{F}(x) = \nabla f(x)$  for all  $x \in \Omega$ . Conservative vector fields have many nice properties that we already know: line integrals of conservative vector fields obey a fundamental theorem of calculus (in particular, they depend only on the endpoints of the curve), and their curl is zero (whenever curl is defined, e.g. n = 2, 3). Note that the curl of a vector field  $\mathbf{F} = (P, Q)$  on  $\mathbb{R}^2$  is taken to be  $Q_x - P_y$  (reminds us of Green's theorem).

This gives us some methods for checking if a vector field is not conservative (non-zero curl or two distinct values for line integrals with different curves but the same endpoints). We have an example showing that being conservative is not equivalent to zero curl:

$$\mathbf{F}(x,y,z) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0\right), \ \forall (x,y,z) \in \mathbb{R}^3 \setminus \mathbb{R}_z$$

where  $\mathbb{R}_z$  is the z-axis. It would be nice if zero curl implied conservative. It turns out that for a large class of vector fields defined on certain regions that this is the case.



This definition says that for any two points x, y in a convex set C, the line connecting x to y is contained in C. Convex sets are very natural, and drawing some pictures allows us to get a feel for them.



As an aside, convexity is a simple notion with many deep consequences throughout mathematics. The study of convex sets and functions forms the basis of convex analysis, a rich geometric tool that finds much use in optimization, for example.

## **Theorem 1: Conditions for Conservative Fields**

Let  $\Omega \subseteq \mathbb{R}^3$  be convex, let  $W = \Omega \setminus \{p_1, \ldots, p_k\}$  where  $p_1, \ldots, p_k$  is a finite collection of points in  $\Omega$  and suppose  $\mathbf{F} \colon W \to \mathbb{R}^3$  is  $C^1$ . Then the following are equivalent:

- a) For any oriented simple closed curve  $\gamma \subseteq W$ ,  $\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = 0$ .
- b)  $\int_{\gamma_1} \mathbf{F} \cdot d\mathbf{s} = \int_{\gamma_2} \mathbf{F} \cdot d\mathbf{s}$  for any oriented simple curves  $\gamma_1, \gamma_2 \subseteq W$  that share the same endpoints.
- c) **F** is conservative, i.e.,  $\mathbf{F} = \nabla f$  for some  $C^1$  function f on W.
- d)  $\operatorname{curl} \mathbf{F} = 0$

We remark that this theorem holds more generally if  $\Omega$  is assumed only to be *simply connected* rather than convex, which is significantly weaker. The topological notion of simple connectivity is beyond the scope of this course, however.

**Exercise 1.** Determine if the following vector fields are conservative, and if so find a corresponding f.

- a)  $\mathbf{F}(x,y) = (\cos xy xy \sin xy, -x^2 \sin xy)$
- b)  $\mathbf{F}(x,y) = (x\sqrt{x^2y^2 + 1}, y\sqrt{x^2y^2 + 1})$
- c)  $\mathbf{F}(x, y) = (2x \cos y + \cos y, -x^2 \sin y x \sin y)$

**Exercise 2.** Let  $\mathbf{F}(x, y, z) = (2xyz + \sin x, x^2z, x^2y)$ . Find a function f such that  $\mathbf{F} = \nabla f$ .

**Exercise 3.** Suppose  $\mathbf{F} = (F_1, F_2, F_3)$  where  $F_i(tx, ty, tz) = tF_i(x, y, z)$  for all  $t \in \mathbb{R}, (x, y, z) \in \mathbb{R}^3$ . Suppose also that  $\operatorname{curl} \mathbf{F} = 0$ . Prove that  $\mathbf{F} = \nabla f$ , where

$$f(x, y, z) = \frac{1}{2} \left( xF_1(x, y, z) + yF_2(x, y, z) + zF_3(x, y, z) \right)$$

Hint: Use Assignment 2, Q4.

**Exercise 4.** Let  $\mathbf{F}(x, y, z) = (e^x \sin y, e^x \cos y, z^2)$ . Compute  $\int_{\gamma} \mathbf{F} \cdot d\mathbf{s}$  where  $\gamma(t) = (\sqrt{t}, t^3, e^{\sqrt{t}})$  for  $0 \le t \le 1$ .

**Exercise 5.** Prove that if  $\mathbf{F} = (F_1, F_2, F_3)$  is a  $C^1$  vector field on  $\mathbb{R}^3$  with div  $\mathbf{F} = 0$  then there exists a  $C^1$  vector field  $\mathbf{G}$  with  $\mathbf{F} = \operatorname{curl} \mathbf{G}$ . Hint: Define  $\mathbf{G} = (G_1, G_2, G_3)$  by

$$G_1(x, y, z) = \int_0^z F_2(x, y, t) dt - \int_0^y F_3(x, t, 0) dt$$
$$G_2(x, y, z) = -\int_0^z F_1(x, y, t) dt$$
$$G_3(x, y, z) = 0$$

Page 2