
MATH 248 Tutorial Friday November 19th 2021

These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 Green’s Theorem and Stokes’ Theorem

Before proceeding with Green’s theorem, we recall the notion of induced positive
orientation of a surface. This was discussed at the end of last week’s tutorial,
and the same discussion is repeated here.

In general, let S ⊆ R3 be a regular surface. We say p ∈ S is an interior
point of S if there is a local C1 parametrization Φ: B1(0) ⊆ R2 → S with
Φ(0) = p,Φu(0) × Φv(0) 6= 0. Any point where this condition fails is called
a boundary point, and the collection of such points is denoted ∂S. For our
purposes, ∂S will be a piecewise-smooth-regular curve. If S is oriented with
normal ~n, the positive orientation of ∂S is such that a person walking along ∂S
with ~n up, the surface will always be on their left.

There is a special case that is used in the statement of Green’s theorem. If a
piecewise-smooth surface S ⊆ R3 is contained in R2 (i.e., z-coordinate is zero on
S), then we talk about its boundary ∂S having positive orientation such that a
person walking along ∂S according to the positive direction will always have the
inside of S to their left. Here the normal vector is k̂ = (0, 0, 1). Unless stated
otherwise the orientation of such boundaries is assumed to be positive.

With that out of the way, we can present the elegant Green’s theorem which
is in some sense a version of the Fundamental Theorem of Calculus in two
dimensions.

Theorem 1: Green’s Theorem

Let D ⊆ R2 be a closed region such that ∂D is piecewise C1. If F =
(P,Q) is a C1 vector field on D then∫

∂D

F · ds =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

You will frequently encounter this theorem in the following form:∫
∂D

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

This is a powerful result that allows us to transform some tricky path integrals
into double integrals, or vice versa. It is remarkable that in some sense all of
the information conveyed in doing a double integral over the entire region D is
equivalent to the information carried by a path integral along the boundary.

Exercise 1. Let C be the positively oriented path along the triangle with
vertices (0, 0), (2, 0), (2, 2). Compute∫

C

x sin(x2)dx+ (3ey
2

− 2x)dy
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(Answer: −4, apply Green’s theorem.)

Exercise 2. Let C be a positively oriented circle of radius 1 around the origin,
and suppose φ(x), ψ(y) are two smooth functions on R. Which of the following
integrals are necessarily zero?

a)
∫
C
φ(y)dx+ ψ(x)dy

b)
∫
C
φ(xy)ydx+ φ(xy)xdy

c)
∫
C
φ(x)ψ(y)dy

(Answer: Only (b) is necessarily zero. Apply Green’s theorem and come up
with simple counterexamples for (a) and (c).)

Let’s examine some of the nice corollaries.

Theorem 2: Area Formula

Let D ⊆ R2 be a closed region such that ∂D is piecewise C1. Then

A(D) =

∫
∂D

xdy = −
∫
∂D

ydx =
1

2

∫
∂D

xdy − ydx

Theorem 3: Difference of Regions

Let D1, D2 ⊆ R2 be closed regions such that ∂D1, ∂D2 are piecewise C1,
with orientations induced by D1, D2 respectively. Set D = D1 \D2. If
F = (P,Q) is a C1 vector field on D such that Qx = Py on D then∫

∂D1

F · ds =

∫
∂D2

F · ds

Theorem 4: Integration by Parts

Let D ⊆ R2 be a closed region such that ∂D is piecewise C1. Let
φ, ψ ∈ C2(D). Then∫∫

D

φ∆ψdA = −
∫∫

D

∇φ · ∇ψdA+

∫
∂D

φ∇ψ · nds

∫∫
D

φ∆ψ − ψ∆φdA =

∫
∂D

(φ∇ψ − ψ∇φ) · nds

You may also encounter Green’s theorem in a so-called vector form, which can
be obtained by identifying R2 within R3 as a space with z-coordinate zero. More
precisely, assuming all the hypotheses of Green’s theorem, treat F = (P,Q) as
F = (P,Q, 0) and we find∫

∂D

F · ds =

∫∫
D

(curlF) · kdA
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In the same vein, we can let n be the outer normal of ∂D and obtain a divergence
form of Green’s theorem: ∫

∂D

F · nds =

∫∫
D

divFdA

Exercise 3. Verify the divergence theorem for F(x, y) = (x, y) on the closed
unit disk D. Then evaluate the integral of the normal component of G(x, y) =
(2xy,−y2) around the ellipse x2/a2 + y2/b2 = 1. (Answer: Verify that both
sides of the divergence form of Green’s theorem are equal in this case, noticing
that the unit normal vector n to ∂D is given by n(x, y) = (x, y). For the second
part, use the divergence form of Green’s theorem. Answer is zero.)

Our next spectacular result is Stokes’ theorem. It generalizes Green’s theorem
to three dimensions, and we can even derive Green’s theorem from it (although
the proof you might see uses Green’s theorem).

Theorem 5: Stokes’ Theorem

Let S ⊆ R3 be a compact regular oriented surface with positively oriented
piecewise C2 boundary ∂S. Let F be a C1 vector field on S. Then∫∫

S

curlF · dS =

∫
∂S

F · ds

Exercise 4. Evaluate
∫∫
S

curlF · dS where F = (z2,−3xy, x3y3) and S is the
surface defined by the portion of the graph z = 5−x2− y2, z ≥ 1, with positive
orientation. (Answer: 0, draw a picture of the surface and notice that the
boundary is

{
(x, y, 1) | x2 + y2 = 2

}
, then apply Stokes’ theorem.)

Exercise 5. Evaluate the surface integral
∫∫
S

curlF · dS where S is the hemi-
sphere x2 + y2 + z2 = 1, z ≥ 0 and F(x, y, z) = (x3,−y3, 0). (Answer: 0, draw a
picture of the surface and notice that the boundary is

{
(x, y, 0) | x2 + y2 = 1

}
,

then apply Stokes’ theorem.)

For many analogous reasons to Green’s theorem, this result is remarkable and
has a number of interesting corollaries.

Theorem 6: Common Boundary

Let S1, S2 ⊆ R3 be two oriented surfaces satisfying the conditions of
Stokes’ theorem such that ∂S1 = ∂S2 = γ. Suppose also that S1, S2

induce opposite orientations on γ. Then for any C1 F:∫∫
S1

curlF · dS =

∫∫
S2

curlF · dS
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Theorem 7: No Boundary

If S is a compact oriented surface satisfying the conditions of Stokes’
theorem, and S is without boundary, then∫∫

S

curlF · dS = 0

2 Gauss’s Divergence Theorem

The last big theorem of vector calculus is the divergence theorem. It gives us
a relationship between triple integrals and surface integrals. Suppose W ⊆ R3

is a bounded solid region with piecewise-smooth boundary S = ∂W . We assign
an orientation on S so that its normal vector points outward.

Theorem 8: Gauss’ Divergence Theorem

SupposeW ⊆ R3 is a bounded solid region with piecewise-smooth bound-
ary S = ∂W . Let F be a C1 vector field on W . Then∫∫∫

W

divFdV =

∫∫
S

F · dS

Exercise 6. Let S be the surface of the cube whose main diagonal has endpoints
(0, 0, 0) and (1, 1, 1). Let F(x, y, z) = (z, y, x). What is the value of the flux of
F through S, given that S has outward orientation? (Recall that flux is another
term for surface integral over closed surface.) (Answer: 1, draw a picture and
apply the divergence theorem, making use of fact that

∫∫∫
W
dV = Vol(W ).)

We study some of the corollaries.

Theorem 9: Difference of Surfaces

Suppose W ⊆ R3 is a bounded solid region satisfying the assumptions of
Gauss’s theorem, and that ∂W = S1 − S2. If divF = 0 on W then∫∫

S1

F · dS =

∫∫
S2

F · dS

Oftentimes our field F will have undesirable behaviour at certain isolated points,
for example division by zero causing blowup. Such points are called singularities,
and even if we cannot apply Gauss’s theorem directly we can often make use of
some results on singularities to manage the problem.
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Theorem 10: Singularities

Suppose W ⊆ R3 is a bounded solid region satisfying the assumptions of
Gauss’s theorem. Let p1, . . . , pN ⊆ intW . Suppose F is a C1 vector field
on W \ {p1, . . . , pN}. Let δ > 0 sufficiently small so that Bδ(pi) ⊆ intW
for all i = 1, . . . , N . Then∫∫

∂W

F · dS =

N∑
i=1

∫∫
∂Bδ(pi)

F · dS

The usual idea is to determine your singularities, isolate them in a number of
small balls of radius δ > 0 for some arbitrary δ sufficiently small, and apply
Gauss’s theorem away from the singularity. Then try to control the behaviour
of the leftover integrals as δ → 0 (remember we chose δ arbitrarily so we are
free to vary it!).

Exercise 7. Let F be a C1 vector field on R3. Prove that

divF(0) = lim
r→0

3
∫
∂Br(0)

F · dS

4πr3

(Solution: Notice that 3/(4πr3) = 1/Vol(Br(0)). Then consider the difference∣∣∣∣∣ 1

Vol(Br(0))

∫
∂Br(0)

F · dS− divF (0)

∣∣∣∣∣
Apply the divergence theorem and use the continuity of divF to show that the
difference goes to zero as r → 0.)
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