
MATH 248 Tutorial Friday November 5th 2021

These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 Triple Integrals

The development and definitions for triple integrals are completely analogous
to the double integral. The key idea is that partitions are now collections of
three ordered sets, the rectangles Rijk defined by these partitions are three-
dimensional boxes, the function f is defined on a rectangular region W ⊆ R3,
and the notation now has three integrals rather than two.

Many of the theorems from last Friday’s tutorial remain true with slight mod-
ifications to notation. The refinement bounds in Theorem 1 remain true, as
do the integral properties in Theorem 3. In particular, triple integrals are still
linear in the sense that∫∫∫

W

(af + bg)dV = a

∫∫∫
W

fdV + b

∫∫∫
W

gdV

and they are monotone in the sense that if f ≥ g on W then∫∫∫
W

fdV ≥
∫∫∫

W

gdV

We take a minute to record a useful lemma on checking if a function is Riemann-
integrable. It is also valid for the double integrals we discussed last time (just
replace W by R).

Theorem 1: Integrability Criterion

Let f : W → R be bounded. Then f is Riemann-integrable over W if
and only if for all ε > 0 there exists a partition P such that

U(f,P)− L(f,P) < ε

We also mention the analogue of Theorem 2:

Theorem 2: Riemann-integrable Functions

Let f : W → R be bounded. If f is continuous then f is Riemann-
integrable over W .
More generally, if Γi ⊆ W , i = 1, . . . , k are graphs of continuous real-
valued functions on bounded regions in R2 (i.e., surfaces) and f is con-

tinuous on W \
⋃k
i=1 Γi then f is Riemann-integrable over W .

The extension of the integral to non-rectangular regions follows the same idea as
the double integral. For a general bounded region W , find a rectangular region
W̃ ⊇ W and define an auxiliary function f̃ that agrees with f on W and is 0
otherwise. Then the integral of f on W is defined to be the integral of f̃ on W̃
(if it exists).

Page 1



MATH 248 Tutorial Friday November 5th 2021

Simple regions in R3 are also defined in a natural way that reminds us of the
two-dimensional case.

Definition 1: Simple Regions

Let W ⊆ R3. Then W is called a z-simple region if there is an ele-
mentary region D ⊆ R2 and continuous functions η1, η2 : D → R such
that

W = {(x, y, z) | η1(x, y) ≤ z ≤ η2(x, y) ∀(x, y) ∈ D}

Similarly, x-simple and y-simple regions are defined by changing the
coordinates in the above definition appropriately. D is called a simple
region if it is x-simple, y-simple, and z-simple. Any of these regions is
called an elementary region.

Now we can introduce Fubini’s theorem for triple integrals. Unsurprisingly, it
looks like Fubini’s theorem for double integrals.

Theorem 3: Fubini’s Theorem

Let f : W → R with W bounded and piecewise-smooth (its boundary is
a union of finitely many graphs of smooth functions). Suppose the con-
ditions of Theorem 2 hold. Then f is integrable on W and if furthermore

W is z-simple and
∫ η2(x,y)
η1(x,y)

f(x, y, z)dz exists for all (x, y) ∈ D then

∫∫∫
W

fdV =

∫∫
D

(∫ η2(x,y)

η1(x,y)

f(x, y, z)dz

)
dA

Analogous formulas hold if W is x-simple or y-simple.

Exercise 1. Evaluate
∫∫∫

W
x2 cos zdxdydz where W is the region bounded by

the planes z = 0, z = π, y = 0, y = 1, x = 0, x+ y = 1.

Exercise 2. Evaluate
∫∫∫

W
(1 − z2)dxdydz where W is the pyramid with top

vertex at (0, 0, 1), and base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0).

Exercise 3. Find the appropriate limits φ1(x), φ2(x), η1(x, y), η2(x, y)to write∫∫∫
W

fdV =

∫ b

a

∫ φ2(x)

φ1(x)

∫ η2(x,y)

η1(x,y)

f(x, y, z)dzdydx

where W =
{

(x, y, z) | x2 + y2 ≤ 1, z ≥ 0, x2 + y2 + z2 ≤ 4
}

.
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Let us introduce some notation briefly: Suppose x = x(u, v, w), y = y(u, v, w), z =
z(u, v, w) are C1 functions of u, v, w. Then we write

∂(x, y, z)

∂(u, v, w)
:= det



∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w


Theorem 4: Change of Variables Theorem

Let W,W ∗ be bounded piecewise-smooth regions in R3, and let T : W ∗ →
W be a bijective C1 map given by x = x(u, v, w), y = y(u, v, w), z =
z(u, v, w). Then for any integrable function f : W → R:∫∫∫

W

f(x, y, z)dxdydz =

∫∫∫
W∗

f(u, v, w)

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ dudvdw

Exercise 4. Evaluate
∫∫∫

W
dxdydz

(x2+y2+z2)3/2
where W is the region bounded by

the two spheres x2 + y2 + z2 = a2, x2 + y2 + z2 = b2 with 0 < b < a.

2 Surface Integrals

A surface S is the graph of a C1 function g : D ⊆ R2 → R with D piecewise
smooth and bounded:

S =
{

(x, y, z) ∈ R3 | z = g(x, y), (x, y) ∈ D
}

Geometric arguments from class lead us to natural definition of area for such
surfaces

A(S) =

∫∫
D

√
1 + g2x + g2ydxdy

We can be much more general than this, and we encapsulate this generality in
the following definition.

Definition 2: Parametrized Surface

A parametrization of a surface is a map Φ: D ⊆ R2 → R3, and the
parametrized surface S is the image Φ(D):

S = {(x(u, v), y(u, v), z(u, v) = Φ(u, v) | (u, v) ∈ D}

We say S is a C1 surface if Φ is C1, and S is a regular surface if
Φu × Φv 6= 0 for all (u, v) ∈ D.
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Again, geometric considerations lead us to define the tangent vectors Tu = Φu,
Tv = Φv, a normal vector to the surface Tu × Tv, and the area element of the
surface S as dS = ‖Tu × Tv‖, from which we define

A(S) =

∫∫
D

‖Tu × Tv‖dA

It is a good idea to verify that we can recover the special case when S is a graph
using this formula.

Exercise 5. Find an expression for a unit vector normal to the surface

x = cos v sinu, y = sin v sinu, z = cosu

at the image of a point (u, v) ∈ [0, π]× [0, 2π]. What is this surface?

Exercise 6. Find the area of the surface defined by x+y+z = 1, x2 +2y2 ≤ 1.

Now we can introduce another key construct of vector calculus - the surface
integral.

Definition 3: Surface Integral

Let S be a parametrized surface and f : S → R a bounded function. We
define the surface integral of f on S to be∫∫

S

fdS :=

∫∫
D

f(Φ(u, v))‖Tu × Tv‖dudv

Exercise 7. Let S be the surface defined by Φ(u, v) = (u+ v, u− v, uv). Show
that the image of Φ is in the graph of the surface 4z = x2 − y2. Then evaluate∫∫
S
xdS for all points on the graph S over x2 + y2 ≤ 1.
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