
MATH 248 Tutorial Friday October 29th 2021

These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 The Riemann Integral

In one dimension, the integral of a non-negative real-valued function can be
interpreted as the area between the graph and the x-axis. In two dimensions,
the integral of a non-negative real-valued function can be interpreted as the
volume between the graph and the xy-plane. We need some technical definitions
to make sense of these notions rigorously.

Definition 1: Partition

Let R = [a, b] × [c, d] be a rectangle in R2. A partition of R is two
ordered sets

P = {x0, x1, . . . , xn; y0, y1, . . . , ym}

such that

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d

If we have two partitions,

P = {x0, x1, . . . , xn; y0, y1, . . . , ym}

P̃ = {x̃0, x̃1, . . . , x̃k; ỹ0, ỹ1, . . . , ỹl}

we say that P̃ is a refinement of P if

{x0, x1, . . . , xn} ⊆ {x̃0, x̃1, . . . , x̃k}

{y0, y1, . . . , ym} ⊆ {ỹ0, ỹ1, . . . , ỹl}

We also denote by Rij = [xi−1, xi] × [yj−1, yj ], ∆xi = xi − xi−1, ∆yj = yj −
yj−1. These are the sub-rectangles that make up the partition. Throughout
this section R will denote the rectangle [a, b]× [c, d].

Definition 2: Lower and Upper Estimates

Let f : R→ R be bounded. Then for any partition P of R, define

L(f,P) =

m∑
j=1

n∑
i=1

inf
x∈Rij

f(x)∆xi∆yj

U(f,P) =

m∑
j=1

n∑
i=1

sup
x∈Rij

f(x)∆xi∆yj

The next result essentially says that as you take your partitions finer and finer,
your lower and upper estimates of the integral will get better and approach each
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other. However, they may not approach each other entirely, and such functions
are not Riemann-integrable by definition.

Theorem 1: Refinement Bounds

Let f : R→ R be bounded, and let P, P̃ be partitions of R such that P̃
is a refinement of P. Then

L(f,P) ≤ L(f, P̃) ≤ U(f, P̃) ≤ U(f,P)

Finally we can define the Riemann integral for functions whose lower and upper
estimates do converge towards each other with equality in the limit.

Definition 3: Riemann Integral

Let f : R→ R be bounded. Define∫∫
R

f(x)dA = inf {U(f,P) | P partition of R}

∫∫
R

f(x)dA = sup {L(f,P) | P partition of R}

We say f is Riemann-integrable over R if
∫∫
R
f(x)dA =

∫∫
R
f(x)dA

in which case we just write∫∫
R

f(x)dA =

∫∫
R

f(x)dA =

∫∫
R

f(x)dA

What functions are Riemann-integrable? It turns out that continuous functions
and functions that are continuous everywhere except for some well-behaved
subsets are Riemann-integrable.

Theorem 2: Riemann-Integrable Functions

Let f : R → R be bounded. If f is continuous, then f is Riemann-
integrable. More generally, if γi ⊆ R, i = 1, . . . , k are the curves of
continuous functions (either over the x-axis or y-axis) such that f is

continuous on R \
⋃k
i=1 γi then f is Riemann-integrable.
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The integral satisfies the following familiar properties.

Theorem 3: Integral Properties

Suppose f, g are Riemann-integrable over R. Then
a) f + g is Riemann-integrable over R and∫∫

R

(f + g)dA =

∫∫
R

fdA+

∫∫
R

gdA

b) For all c ∈ R, cf is Riemann-integrable over R and∫∫
R

cfdA = c

∫∫
R

fdA

c) If f(x, y) ≥ g(x, y) on R then∫∫
R

fdA ≥
∫∫

R

gdA

d) If R = R1∪· · ·∪Rk with Ri, i = 1, . . . , k pairwise disjoint rectangles
then ∫∫

R

fdA =

k∑
i=1

∫∫
Ri

fdA

Exercise 1. If f(x, y) = esin(x+y) on D = [−π, π]× [−π, π], show that

1

e
≤ 1

4π2

∫∫
D

f(x, y)dA ≤ e

Now we wish to extend the integral to functions defined on more general regions
than rectangles.

Definition 4: Integral on Bounded Regions

Let D ⊆ R2 be a bounded region and f : D → R be bounded. Let R ⊇ D
be a rectangle. Define a function on R:

f∗R(x, y) =

{
f(x, y) (x, y) ∈ D
0 (x, y) /∈ D

We say f is Riemann-integrable over D if there is a rectangle R ⊇ D
such that f∗R is Riemann-integrable on R and we define∫∫

D

fdA =

∫∫
R

f∗RdA

Exercise 2. Let f be continuous, f ≥ 0 on R. Show that if
∫∫
R
fdA = 0 then

f = 0 on R.
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At this point we define some nice regions in the plane that we can often compute
integrals over without too much trouble.

Definition 5: Simple Regions

Let D ⊆ R2. Then D is called a y-simple region if there exist contin-
uous functions φ1, φ2 : [a, b]→ R such that

D = {(x, y) | a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

Similarly, D is called an x-simple region if there exist continuous func-
tions ψ1, ψ2 : [c, d]→ R such that

D = {(x, y) | c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}

D is called a simple region if it is both x-simple and y-simple. Any of
these regions is called an elementary region.

Theorem 4: Integral on Elementary Regions

Let D =
⋃k
i=1Di with each Di, i = 1, . . . , k an elementary region. Sup-

pose intDi ∩ intDj = ∅ for all i 6= j. Suppose γi ⊆ D, i = 1, . . . ,m
are curves of continuouse functions (either over the x-axis or y-axis) and
suppose that f is continuous on D \

⋃m
i=1 γi. Then f is integrable on D.

Double integrals are nice in theory but computing them from the definition is
difficult to do by hand. We can use Fubini’s theorem to write many double
integrals as iterated integrals, and then use our knowledge of one-dimensional
calculus (e.g. FTC) to carry out the integration.

Theorem 5: Fubini’s Theorem

Let f : R → R be Riemann-integrable over R and suppose for each x ∈
[a, b] that

∫ d
c
f(x, y)dy exists. Then

∫ b
a

∫ d
c
f(x, y)dydx exists and∫ b

a

∫ d

c

f(x, y)dydx =

∫∫
R

fdA

Exercise 3. Compute the volume of the solid bounded by the surface z = sin y,
the planes x = 1, x = 0, y = 0, y = π/2, and the xy-plane.

Of course, the symmetric statement interchanging x and y is also true. We can
cover all of these cases in the following general theorem:
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Theorem 6: Iterated Integrals on Elementary Regions

Let f : D → R where f,D satisfy the assumptions of Theorem 4. Then

a) If D is y-simple and for every x ∈ [a, b],
∫ φ2(x)

φ1(x)
f(x, y)dy exists,

then
∫ b
a

∫ φ2(x)

φ1(x)
f(x, y)dydx exists and

∫∫
D

fdA =

∫ b

a

∫ φ2(x)

φ1(x)

f(x, y)dydx

b) If D is x-simple and for every y ∈ [c, d],
∫ ψ2(y)

ψ1(y)
f(x, y)dx exists,

then
∫ d
c

∫ ψ2(y)

ψ1(y)
f(x, y)dxdy exists and

∫∫
D

fdA =

∫ d

c

∫ ψ2(y)

ψ1(y)

f(x, y)dxdy

Exercise 4. Show that
∫ 1

0

∫ 1

0
x2−y2

(x2+y2)2 dydx = π
4 but that the iterated integral

in the opposite order is equal to −π4 . Does this contradict Fubini’s theorem?

Exercise 5. Evaluate
∫ 1

0

∫ 1√
y
ex

3

dxdy.

Exercise 6. Evaluate
∫∫
D
xdA where D is the interior of the triangle with

vertices (−3, 0), (6, 0), (0, 3).

We also have a mean value theorem for double integrals.

Theorem 7: Mean Value Theorem for Double Integrals

Suppose f : D → R is continuous on an elementary region D ⊆ R2. Then
there is a point (x0, y0) ∈ D such that∫∫

D

fdA = f(x0, y0)A(D)

where A(D) is the area of D defined by

A(D) =

∫∫
D

1dA

Let us introduce some notation briefly: Suppose x = x(u, v), y = y(u, v) are C1

functions of u, v. Then we write

∂(x, y)

∂(u, v)
:= det


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


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The change of variables theorem allows us to transform the integrand and do-
main of integration simultaneously to obtain a simpler equivalent integral.

Theorem 8: Change of Variables Theorem

Let D,D∗ be elementary regions in R2, and let T : D∗ → D be a bijective
C1 map given by x = x(u, v), y = y(u, v). Then for any integrable
function f : D → R:∫∫

D

f(x, y)dxdy =

∫∫
D∗

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv

Exercise 7. Calculate
∫∫
R

(x + y)2ex−ydA where R is the region bounded by
x− y = −1, x− y = 1, x+ y = 1, x+ y = 4.
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