
MATH 248 Tutorial Friday October 8th 2021

These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 Curves and Path Integrals

We will begin by studying functions from intervals in R to a higher dimensional
space Rn. Such functions have the geometric interpretation as curves or paths
in Rn, take for example the trajectory that a particle takes over a period of time.

Definition 1: C1 Curve

Let γ : [a, b]→ Rn. We say that γ ∈ C1([a, b]) if γ is C1 on (a, b) and

γ′(a+) := lim
t→a+

γ(t)− γ(a)

t− a

γ′(b−) := lim
t→b−

γ(t)− γ(b)

t− b
exist and limt→a+ γ

′(t) = γ′(a+), limt→b− γ
′(t) = γ′(b−).

An equivalent formulation is that γ is the restriction of a C1 map from some
open interval (A,B) ⊇ (a, b) with A < a, b < B.

We can write any such γ as γ(t) = (x1(t), . . . , xn(t)) and taking the derivative
gives us the tangent vector:

γ′(t) = (x′1(t), . . . , x′n(t))

Continuing our particle analogy, the tangent vector represents the velocity vec-
tor of the particle and its norm is the speed.

A natural problem is to measure the length of a curve, and using an argument
based on polygonal paths it becomes clear that the proper definition is via an
integral.

Definition 2: Length of a Curve

Let γ : [a, b] → Rn belong to C1([a, b]). We define the length element
ds = ‖γ′(t)‖dt. Then the length of the curve γ is

L(γ) :=

∫ b

a

‖γ′(t)‖dt =

∫
γ

ds

For a C1 function f : [a, b]→ R we can realize its graph as a curve γ defined by
γ(t) = (t, f(t)). Then using the formula above we find

L(γ) =

∫ b

a

√
1 + (f ′(t))2dt
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We can enlarge our class of curves by ignoring issues of differentiability at finitely
many points, as long as we still maintain continuity.

Definition 3: Curve Properties

Suppose γ : [a, b]→ Rn is continuous. We say γ is:
a) piecewise C1 if there exists a = a0 < a1 < · · · < am = b such

that γ ∈ C1([ai−1, ai]) for all i = 1, . . . ,m.
b) regular if γ ∈ C1([a, b]) and γ′(t) 6= 0 for all t ∈ [a, b].
c) piecewise smooth if there exists a = a0 < a1 < · · · < am = b

such that γ is regular in each [ai−1, ai] for all i = 1, . . . ,m.

The next theorem gives us some intuition for why regular curves are nice. It tells
us that regular curves look locally like graphs, with all coordinates dependent
on only one of the coordinates.

Theorem 1: Regular Curve Property

If γ : [a, b] → Rn is regular then there exists a = t0 < t1 < · · · < tN = b
such that for all i = 1, . . . , N , on each [ti−1, ti] there is an index ji and
a map t 7→ xji(t) that is C1 and invertible such that

γ(t) = (x1(xji(t)), . . . , xji−1(xji(t)), xji(t), . . . , xn(xji(t)))

That is, γ is a graph over xji .

Now we can generalize our definition of length to piecewise C1 curves:

Definition 4: Length of a Piecewise C1 Curve

Let γ : [a, b] → Rn be piecewise C1 on [a, b]. Then the length of the
curve γ is

L(γ) :=

m∑
i=1

∫ ai

ai−1

‖γ′(t)‖dt

where the partition corresponds to the one given by the piecewise C1

property.

Finally we can introduce a fundamental tool of vector calculus: the path integral
(also called line integral).
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Definition 5: Path Integral

Let γ : [a, b] → Rn be piecewise C1 on [a, b]. Suppose f is a continuous
function defined along the image of γ. Then the path integral of f
along γ is∫

γ

fds :=

∫ b

a

f(γ(t))‖γ′(t)‖dt =

m∑
i=1

∫ ai

ai−1

f(γ(t))‖γ′(t)‖dt

where the partition corresponds to the one given by the piecewise C1

property.

For the remainder of this section assume that γ : [a, b] → R3 is a C3 regular
curve. Then its arc-length function

s(t) :=

∫ t

a

‖γ′(u)‖du

is strictly increasing so the relationship between t and s is invertible. This allows
us to write t = h(s) for some function h. Then we can define γ̃(s) := γ(h(s))
and check that ‖γ̃′(s)‖ = 1 for all s. The function γ̃(s) is called the arc-length
parametrization of γ.

Now we know that we can parametrize by arc-length, let us assume going forward
that we have already done so, i.e. γ is a function of s and satisfies ‖γ′(s)‖ = 1.

Then the tangent vector T (s) = γ′(s) is a unit vector and γ′′(s) = T ′(s) is
orthogonal to T (s).

There are a handful of related quantities and functions that we can associate
with such curves. We collect them in the following definition.

Definition 6: Geometry of Curves

Suppose γ : [a, b]→ R3 is a C3 regular curve parametrized by arc-length.
a) κ(s) := ‖T ′(s)‖ is the curvature of γ.

b) If κ(s) > 0 define the principal normal vector N(s) = T ′(s)
‖T ′(s)‖ .

c) B(s) := T (s)×N(s) is the binormal vector.
It can be checked that B′(s) = −τ(s)N(s) and the function τ is called
the torsion of γ.

2 Vector Fields

Vector fields are just functions from Rn to Rn. We will focus on differentiable
vector fields and various operations we can do with them.
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Definition 7: Vector Field

A function F : Ω ⊆ Rn → Rn is called a vector field. To every point
x ∈ Ω it assigns another vector F (x) ∈ Rn.

Take any differentiable function f : Ω ⊆ Rn → R. Then its gradient ∇f : Ω →
Rn is a vector field called the gradient vector field. We have to get through
several definitions before we can do anything interesting.

Definition 8: Flow Lines

Let F be a vector field on Ω ⊆ Rn. A flow line for F is a curve γ
mapping into Ω such that

γ′(t) = F (γ(t))

That is, F yields the velocity field of the path γ.

For any vector field F we can obtain a meaningful scalar function on Ω called
the divergence of F .

Definition 9: Divergence

Let F = (F1, . . . , Fn) be a C1 vector field on Ω ⊆ Rn. The divergence
of F is the scalar function

divF :=: ∇ · F :=

n∑
i=1

∂Fi
∂xi

Naturally we wonder if for any vector field F we can obtain a different mean-
ingful vector field on Ω too. The problem is subtle, so we restrict our attention
to R3 where the answer is affirmative and this field is called the curl of F .

Definition 10: Curl

Let F = (F1, F2, F3) be a C1 vector field on Ω ⊆ R3. The curl of F is
the vector field

curlF :=: ∇× F :=

(
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

)

When you need to know the definition of curl, just remember the determinant
formula for cross product. The curl is not a literal cross product, but you can
think of it as a symbolic cross product that uses differentiation operators.
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curlF = ∇× F = det

 i j k
∂
∂x1

∂
∂x2

∂
∂x3

F1 F2 F3

 = det

 i ∂
∂x1

F1

j ∂
∂x2

F2

k ∂
∂x1

F3


The physical significance of these quantities and fields will become more clear
after we cover the fundamental theorems of calculus in R2 and R3.

We say that a vector field F is incompressible if divF = 0, and that it is
irrotational if curlF = 0. There are various identities for the divergence and
curl operators that you can prove. Some are in the lecture slides, and it is a
good exercise of using the definitions to verify them.

We conclude with two special results for C2 functions.

Theorem 2: Gradient is Irrotational

Let f : Ω ⊆ Rn → R be C2. Then curl∇f = 0.

Theorem 3: Curl is Incompressible

Let F : Ω ⊆ R3 → R3 be a C2 vector field. Then div curlF = 0.

3 Exercises

1. (Marsden & Tromba 4.1 #11) Determine which of the following paths are
regular.

a) γ(t) = (cos t, sin t, t)

b) γ(t) = (t3, t5, cos t)

c) γ(t) = (t2, et, 3t+ 1)

2. (Marsden & Tromba 4.2 #13) Let γ be the path γ(t) = (2t, t2, log t)
defined for t > 0. Find the arc-length of γ between the two points (2, 1, 0)
and (4, 4, log 2).

3. (Marsden & Tromba 4.2 #14) Find the arc-length function for the curve
γ(t) = (cosh t, sinh t, t).

4. (Marsden & Tromba 4.2 #18) Show that any line l(t) = x0 + tv has zero
curvature, where v is a unit vector.

5. (Straight lines are shortest) Let γ : (a, b)→ R3 be a C1 curve. Let [c, d] ⊆
(a, b), and set γ(c) = p, γ(d) = q.

a) Show that for any constant unit vector v

(q − p) · v =

∫ d

c

γ′(t) · vdt ≤
∫ d

c

‖γ′(t)‖dt

Page 5



MATH 248 Tutorial Friday October 8th 2021

b) Set v = q−p
‖q−p‖ and show that

‖γ(d)− γ(c)‖ ≤
∫ d

c

‖γ′(t)‖dt

that is, the curve of shortest length from γ(c) and γ(d) is the straight
line joining these points.

6. (Marsden & Tromba 4.3 #18) Show that γ(t) = (sin t, cos t, et) is a flow
line for F (x, y, z) = (y,−x, z).

7. (Marsden & Tromba 4.3 #21) Let F (x, y, z) = (yz, xz, xy). Find a func-
tion f : R3 → R such that F = ∇f . Do the same for F (x, y, z) = (x, y, z).

8. (Marsden & Tromba 4.4 #3) Find the divergence of F (x, y, z) = (x, y +
cosx, z + exy).

9. (Marsden & Tromba 4.4 #14) Find the curl of F (x, y, z) = (yz, xz, xy).

10. (Marsden & Tromba 4.4 #21) Let F (x, y, z) = (x2, x2y, z + zx). Show
that ∇ · (∇× F ) = 0. Does there exist f : R3 → R such that F = ∇f?

11. (Marsden & Tromba 4.4 #28) Prove that div(∇f ×∇g) = 0.
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