
MATH 248 Tutorial Friday September 24th 2021

These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 Higher Order Derivatives

The Mean Value Theorem for functions of one variable is an extremely powerful
and fundamental result in analysis, allowing us to understand behaviour of a
function on an interval using the behaviour of its derivative. The result gener-
alizes to real-valued functions defined on balls in Rn.

Theorem 1: Mean Value Theorem

Let B ⊆ Rn be a ball, and suppose f : B → R is differentiable on B.
Then for all x, y ∈ B there exists z ∈ B such that

f(x)− f(y) = Df(z)(x− y)

where Df(z) is the Jacobian of f at z. In particular,

|f(x)− f(y)| ≤ ‖Df(z)‖‖x− y‖

This is slightly restrictive since we require the range of f to be R. If we allow the
range of f to be Rm we are no longer guaranteed that the equality in Theorem
1 will hold, but we still have a useful inequality:

Theorem 2: Mean Value Inequality

Let B ⊆ Rn be a ball, and suppose f : B → Rm is differentiable on B.
Then for all x, y ∈ B there exists z ∈ B such that

‖f(x)− f(y)‖ ≤ ‖Df(z)‖‖x− y‖

Recall that if f : Ω ⊆ Rn → Rm is differentiable then it has partial derivatives
∂fi
∂xj

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. We can then discuss the differentiability of

these functions, which leads us to the concept of higher order derivatives.

Definition 1: Ck

Let f : Ω ⊆ Rn → Rm with Ω open. We say that f ∈ Ck(Ω) for an
integer k ≥ 0 if all of the partial derivatives of f up to order k exist and
are continuous.

An important special case: f : Ω → R, f ∈ C2(Ω), we define the Hessian of f
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at x to be:

Hf (x) =


∂2f1
∂x1∂x1

(x)
∂2f1
∂x1∂x2

(x) · · · ∂2f1
∂x1∂xn

(x)

...
...

...
...

∂2f1
∂xn∂x1

(x)
∂2f1

∂xn∂x2
(x) · · · ∂2f1

∂xn∂xn
(x)


Higher order partial derivatives can quickly become unwieldy if we have to con-
sider all the possible orders in which they can be taken. Here we state a simple
condition under which we can forget about the order and are guaranteed that
the result will be the same no matter what.

Theorem 3: Equality of Mixed Partials

Suppose f : Ω ⊆ Rn → R is twice differentiable. If x ∈ Ω and
∂2f

∂xi∂xj
,

∂2f

∂xj∂xi
are continuous at x then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x)

In particular, if all of the second order partial derivatives of f are con-
tinuous at f then Hf (x) is symmetric.

As a curiousity, the converse is not true. The function f(x, y) = x2y2 sin(1/x) sin(1/y)
can be continuously extended to the lines x = 0 and y = 0, and it is an interest-

ing exercise to show that
∂2f

∂x∂y
=

∂2f

∂y∂x
while these functions are not continu-

ous at (0, 0). I found this example here: https://math.stackexchange.com/

questions/2095484/clairauts-theorem-is-reversible
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Taylor’s theorem in one variable allows us to understand the local behaviour of
a function near a point in terms of a polynomial with a remainder term. This
can be generalized to higher dimensions, and the general formula is unwieldy
but we will focus mainly on the first-order and second-order approximations
(meaning in terms of first and second-order partial derivatives).

Theorem 4: Taylor’s Theorem

Suppose f : Ω ⊆ Rn → R is in Ck+1(Ω) and x0 ∈ Ω. Then

f(x) = f(x0) +

n∑
i=1

∂f

∂xi
(x0)(xi − xi0)

+
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(x0)(xi − xi0)(xj − xj0) + · · ·

+
1

k!

∑
αi1

+···+αik
=k

∂kf

∂xαi1
∂xαik

(x0)(xαi1 − xαi1
0 ) · · · (xαik − xαik

0 )

+Rfk+1(x)

where

Rfk+1(x) =
1

(k + 1)!

∑
αi1

+···+αik+1
=k+1

∂k+1f

∂xαi1
· · · ∂xαik+1

(x0)(xαi1−xαi1
0 )

· · · (xαik+1 − x
αik+1

0 ) (1)

which satisfies

lim
x→x0

Rfk+1(x)

‖x− x0‖k
= 0

The Rfk term represents the error, and the condition at the bottom essentially
tells us that the error goes to zero as we get closer to the point x0 that we are
expanding around.

The most important special cases are when k = 0 and k = 1:

f(x) = f(x0) +

n∑
i=1

∂f

∂xi
(x0)(xi − xi0) +Rf1 (x)

f(x) = f(x0)+

n∑
i=1

∂f

∂xi
(x0)(xi−xi0)+

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(x0)(xi−xi0)(xj−xj0)+Rf2 (x)

More compactly:

f(x) = f(x0) +∇f(x0)T (x− x0) +Rf1 (x)

f(x) = f(x0) +∇f(x0)T (x− x0) +
1

2
(x− x0)THf (x0)(x− x0) +Rf2 (x)
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2 Optimization

An important application of derivatives is for optimizing real-valued functions.
Many of the optimization theorems in one dimension have a corresponding re-
sult in higher dimensions, and we collect these results here. We will develop
more sophisticated methods to solve constrained optimization problems in the
coming lectures.

Definition 2: Local Extrema

Let f : Ω ⊆ Rn → R. We say that x0 ∈ Ω is a local maximum
(minimum) point if there exists r > 0 such that

f(x) ≤ f(x0) (f(x) ≥ f(x0) respectively)

for all x ∈ Br(x0).

Definition 3: Critical Points

Let f : Ω ⊆ Rn → R. We say that x0 ∈ Ω is a critical point if f is
differentiable at x0 and ∇f(x0) = 0.

Theorem 5: First Derivative Test

Suppose f : Ω ⊆ Rn → R is differentiable at x0. If x0 is a local maximum
or minimum point of f then ∇f(x0) = 0.

Definition 4: Definite Matrix

A symmetric matrix A ∈ Rn×n is called positive semi-definite, written
A � 0, if

xTAx ≥ 0

for all x ∈ Rn. We say that A is positive definite if the inequality
is strict for all non-zero x ∈ Rn. We say that A is negative (semi)-
definite if −A � 0.

Intuitively, positive/negative (semi)-definite matrices are like non-negative/non-
positive numbers (strictly non-zero in the definite case). The definiteness of the
Hessian plays a role analogous to that of the sign of the second derivative when
we are looking at critical points.

A symmetric matrix A is positive/negative (semi)-definite if and only if all the
eigenvalues are non-negative/non-positive respectively, and also strictly non-
zero in the definite case. This is a nice result but not useful for quick compu-
tations, so we point out two useful tricks for checking when small matrices are
positive definite.

A =

(
a b
c d

)
� 0 ⇐⇒ det(A) > 0 and a > 0
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A =

a b c
d e f
g h i

 � 0 ⇐⇒ a > 0 and det

(
a b
d e

)
> 0 and det(A) > 0

Theorem 6: Second Derivative Test

Suppose f : Ω ⊆ Rn → R is C3 in a neighbourhood of x0 ∈ Ω.
a) If x0 is a local maximum (minimum) point of f then Hf (x0) is

negative (positive) semi-definite.
b) If x0 is a critical point of f andHf (x0) is negative (positive) definite

then x0 is a local maximum (minimum) point of f .

3 Exercises

1. Show that the Mean Value Theorem can fail when the range is no longer
one-dimensional. Hint: Consider the function f(x) = (cosx, sinx).

2. (Marsden & Tromba 3.1 #32) Let

f(x, y) =

{
xy(x2−y2)
x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Compute
∂f

∂x
and

∂f

∂y
for (x, y) 6= (0, 0), and at the origin. Compute

∂2f

∂x∂y

and
∂2f

∂y∂x
at (0, 0) and compare. Explain the result.

3. (Marsden & Tromba 3.1 #17) Suppose f(x, y, z) is of class C3. Show that

∂3f

∂x∂y∂z
=

∂3f

∂y∂z∂x

4. (Marsden & Tromba 3.2 #11) Let g(x, y) = sin(xy)− 3x2 log y + 1. Find
the degree 2 polynomial which best approximates g near the point (π/2, 1).

5. (Marsden & Tromba 3.3 #5) Find and classify the critical points of f(x, y) =

e1+x
2−y2 .

6. (Marsden & Tromba 3.3 #17) Find all local extrema for f(x, y) = 8y3 +
12x2 − 24xy.

7. (Marsden & Tromba 3.3 #18) Let f(x, y, z) = x2 + y2 + z2 + kyz. Verify
that (0, 0, 0) is a critical point and determine all k such that (0, 0, 0) is a
local minimum.

8. (Marsden & Tromba 3.3 #46) We say u ∈ C2(B1(0)) is strictly subhar-
monic if

∂2u

∂x2
+
∂2u

∂y2
> 0

Show that u cannot have a maximum point in B1(0).
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