
MATH 248 Midterm Review Wednesday October 20th 2021

These notes were prepared by Ariel Goodwin for MATH 248 at McGill Univer-
sity as taught by Pengfei Guan.

1 Continuity and Differentiability

Perhaps the most fundamental definitions in this course, the ideas of continuity
and differentiability are essential.

Definition 1: Continuity

A function f : Ω ⊆ Rn → Rm is continuous at x0 ∈ Ω if for all ε > 0
there exists δ > 0 such that

‖f(x0)− f(y)‖ < ε

provided that ‖x0 − y‖ < δ. We say f is continuous on Ω if f is
continuous at each x ∈ Ω.

Definition 2: Differentiability

A function f : Ω ⊆ Rn → Rm is differentiable at x0 ∈ Ω if there exists
a linear map L ∈ Rm×n such that

lim
x→x0

‖f(x)− f(x0)− L(x− x0)‖Rm

‖x− x0‖Rn

= 0

We say f is differentiable on Ω if f is differentiable at each x ∈ Ω.

Theorem 1: Jacobian Properties

If f = (f1, . . . , fm) : Ω ⊆ Rn → Rm is differentiable at x0 ∈ Ω then f is

continuous at x0, all partial derivatives
∂fi
∂xj

(x0) exist for i = 1, . . . ,m,

j = 1, . . . , n, and the matrix

Df(x0) =


∂f1

∂x1
(x0) · · · ∂f1

∂xn
(x0)

...
. . .

...
∂fm
∂x1

(x0) · · · ∂fm
∂xn

(x0)


of partial derivatives of f at x0 is the unique linear map L in the definition
of the differentiation. This matrix Df(x0) is called the Jacobian or
differential or derivative matrix.

Keep in mind that differentiability implies existence of partial derivatives, but
existence of partial derivatives does not imply continuity.
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Theorem 2: Continuity of Partial Derivatives is Sufficient

If f = (f1, . . . , fm) : Ω ⊆ Rn → Rm is such that all partial derivatives
∂fi
∂xj

for i = 1, . . . ,m, j = 1, . . . , n exist and are continuous at x0, then

f is differentiable at x0.

Do not forget that this condition is not necessary - there are functions that are
differentiable at a point and their partial derivatives are not continuous at that
point.

Theorem 3: Chain Rule

If f : Ω1 ⊆ Rn → Ω2 ⊆ Rm and g : Ω2 ⊆ Rm → Rk are such that f is
differentiable at x ∈ Ω1 and g is differentiable at f(x) ∈ Ω2 then g ◦ f is
differentiable at x and

D(g ◦ f)(x) = Dg(f(x))Df(x)

2 Mean Value Theorem, Taylor’s Theorem

The Mean Value Theorem and its corresponding inequality are vital results that
allow us to understand function behaviour in terms of derivative behaviour.

Theorem 4: Mean Value Theorem

Let B ⊆ Rn be a ball, and suppose f : B → R is differentiable on B.
Then for all x, y ∈ B there exists z ∈ B such that

f(x)− f(y) = Df(z)(x− y)

where Df(z) is the Jacobian of f at z. In particular,

|f(x)− f(y)| ≤ ‖Df(z)‖‖x− y‖

Theorem 5: Mean Value Inequality

Let B ⊆ Rn be a ball, and suppose f : B → Rm is differentiable on B.
Then for all x, y ∈ B there exists z ∈ B such that

‖f(x)− f(y)‖ ≤ ‖Df(z)‖‖x− y‖

Two important theorems on higher-order derivatives: equality of mixed partials
allows us to take partial derivatives in whatever order we please, and Taylor’s
theorem allows us to approximate functions using polynomials with an explicit
form for the error.
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Theorem 6: Equality of Mixed Partials

Suppose f : Ω ⊆ Rn → R is twice differentiable. If x ∈ Ω and
∂2f

∂xi∂xj
,

∂2f

∂xj∂xi
are continuous at x then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x)

In particular, if all of the second order partial derivatives of f are con-
tinuous at f then the Hessian Hf (x) is symmetric.

Theorem 7: Taylor’s Theorem

Suppose f : Ω ⊆ Rn → R is in Ck+1(Ω) and x0 ∈ Ω. Then

f(x) = f(x0) +

n∑
i=1

∂f

∂xi
(x0)(xi − xi0)

+
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(x0)(xi − xi0)(xj − xj0) + · · ·

+
1

k!

∑
αi1

+···+αik
=k

∂kf

∂xαi1
∂xαik

(x0)(xαi1 − xαi1
0 ) · · · (xαik − xαik

0 )

+Rfk+1(x)

where

Rfk+1(x) =
1

(k + 1)!

∑
αi1

+···+αik+1
=k+1

∂k+1f

∂xαi1
· · · ∂xαik+1

(x0)(xαi1−xαi1
0 )

· · · (xαik+1 − x
αik+1

0 ) (1)

which satisfies

lim
x→x0

Rfk+1(x)

‖x− x0‖k
= 0

3 Optimization

The theory of critical points and the derivative tests to find and classify critical
points is the cornerstone of smooth optimization.
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Theorem 8: First Derivative Test

Suppose f : Ω ⊆ Rn → R is differentiable at x0. If x0 is a local maximum
or minimum point of f then ∇f(x0) = 0.

Theorem 9: Second Derivative Test

Suppose f : Ω ⊆ Rn → R is C3 in a neighbourhood of x0 ∈ Ω.
a) If x0 is a local maximum (minimum) point of f then Hf (x0) is

negative (positive) semi-definite.
b) If x0 is a critical point of f andHf (x0) is negative (positive) definite

then x0 is a local maximum (minimum) point of f .

Don’t forget that saddle points can also occur at critical points.

Definition 3: Saddle Point

Let f : Ω ⊆ Rn → R and x0 ∈ Ω a critical point of f . If x0 is neither
a maximum nor a minimum we say that x0 is a saddle point. In
particular, for all r > 0 we can find points x1 and x2 in Br(x0) with

f(x1) < f(x0) < f(x2)

Theorem 10: Saddle Point Existence

Let f : Ω ⊆ Rn → R be C3 and x0 a critical point of f . If det(Hf (x0)) 6=
0 and Hf (x0) is neither positive definite nor negative definite then x0 is
a saddle point.

All of the techniques above deal with optimization in open sets. To handle
optimization on compact sets that include their boundary, we need some more
machinery. There are two main strategies for optimizing the function on the
boundary.

1. If the boundary is sufficiently simple, for example a rectangle or triangle
in R2 that is piecewise linear, then we can restrict our function to the
lines defining the boundary and reduce it to a problem of 1-dimensional
optimization.

2. If the boundary is given by the form {x ∈ Rn | g(x) = 0} for sufficiently
nice g (i.e. g ∈ C1) then we use the method of Lagrange multipliers.

Page 4



MATH 248 Midterm Review Wednesday October 20th 2021

Theorem 11: Lagrange Multiplier Theorem

Let f and g be C1 functions from Rn to R. Suppose x0 belongs to the
level set

Γ = {x ∈ Rn | g(x) = 0}

In other words, g(x0) = 0. Suppose also that Dg(x0) 6= 0. If the
restricted function f̃ := f |Γ has a maximum or minimum value at x0

then there exists a constant λ ∈ R such that

∇f(x0) = λ∇g(x0)

While the statement of this theorem is sophisticated, the key idea is that if we
are solving an optimization problem of the form

min
x

f(x)

s.t. g(x) = 0
(2)

then we are searching for optimizers of the function f̃ and the theorem tells us
that we can try and study the system of equations

∇f(x) = λ∇g(x)

g(x) = 0

to solve our problem. The more general version of this theorem for multiple
constraints is given below.

Theorem 12: General Lagrange Multiplier Theorem

Let f and gi, i = 1, . . . , k be C1 functions from Ω ⊆ Rn to R. Let x0 ∈ Ω
and define

Γ = {x ∈ Ω | gi(x) = gi(x0) ∀i = 1, . . . , k}

Suppose also that ∇g1(x0), . . . ,∇gk(x0) are linearly independent. If the
restricted function f̃ := f |Γ has a maximum or minimum value at x0

then there exist constants λi ∈ R, i = 1, . . . , k such that

∇f(x0) =

k∑
i=1

λi∇gi(x0)

We now have a general strategy for solving optimization problems.

1. Locate all critical points of f in Ω.

2. Determine if the boundary ∂Ω should be dealt with using basic geometry
or Lagrange multipliers.

3. Use the method chosen in the previous step to identify all the optimal
points on the boundary.

4. Evaluate f at every point found in steps 1 and 3, and the greatest value
is the maximum of f while the smallest value is the minimum of f .
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4 Exercises

1. Define f(x, y) = x6y2

x8+y4 for (x, y) 6= (0, 0) and f(0, 0) = 0. Determine the

differentiability of f at the origin and the continuity of
∂f

∂x
,
∂f

∂y
at the

origin.

2. Suppose f : Rn → R, g : Rn → R are differentiable. Show that the product
function h(x) = f(x)g(x) is differentiable and that

Dh(x0) = f(x0)Dg(x0) + g(x0)Df(x0)

3. Suppose f : Rn → R is differentiable, and satisfies

f(x) = 0 ∀x : ‖x‖ = 1

‖∇f(x)‖ ≤ 1 ∀x ∈ B1(0)

Show that |f(x)| ≤ 1 on B1(0).

4. Find the shortest distance from the point (3, 2, 1, . . . , 1) ∈ Rn (n ≥ 3) to
the hyperplane with equation x1 + x2 + · · ·+ xn = 1.

5. Determine the nature of the critical points of f(x, y) = x3 + y2 − 6xy +
6x+ 3y.

6. Calculate the second-order Taylor approximation to f(x, y) = cosx sin y
at (π, π/2).

7. Let f : Rn → R be a C2 function with

∂2f

∂xi∂xj
(x) = 0

for all i, j = 1, . . . , n and x ∈ Rn. Show that there exist constants
a0, a1, . . . , an ∈ R such that

f(x) = a0 +

n∑
i=1

aixi

for all x = (x1, . . . , xn) ∈ Rn. What are the values of these constants?

8. Design a cylindrical can (with lid) to contain 1L of water using the mini-
mum amount of metal.
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